These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24850073)

  • 1. Non-faradaic impedance characterization of an evaporating droplet for microfluidic and biosensing applications.
    Dak P; Ebrahimi A; Alam MA
    Lab Chip; 2014 Jul; 14(14):2469-79. PubMed ID: 24850073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On chip droplet characterization: a practical, high-sensitivity measurement of droplet impedance in digital microfluidics.
    Sadeghi S; Ding H; Shah GJ; Chen S; Keng PY; Kim CJ; van Dam RM
    Anal Chem; 2012 Feb; 84(4):1915-23. PubMed ID: 22248060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction: Non-faradaic impedance characterization of an evaporating droplet for microfluidic and biosensing applications.
    Dak P; Ebrahimi A; Alam MA
    Lab Chip; 2015 Feb; 15(3):931. PubMed ID: 25562709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA aptamer-based non-faradaic impedance biosensor for detecting E. coli.
    Abdelrasoul GN; Anwar A; MacKay S; Tamura M; Shah MA; Khasa DP; Montgomery RR; Ko AI; Chen J
    Anal Chim Acta; 2020 Apr; 1107():135-144. PubMed ID: 32200887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device.
    Justin G; Nasir M; Ligler FS
    Anal Bioanal Chem; 2011 May; 400(5):1347-58. PubMed ID: 21448604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective in situ functionalization of biosensors on LOC devices using laminar co-flow.
    Parra-Cabrera C; Sporer C; Rodriguez-Villareal I; Rodriguez-Trujillo R; Homs-Corbera A; Samitier J
    Lab Chip; 2012 Oct; 12(20):4143-50. PubMed ID: 22868270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip.
    Lei KF; Wu MH; Hsu CW; Chen YD
    Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.
    Ben-Yoav H; Dykstra PH; Bentley WE; Ghodssi R
    Methods Mol Biol; 2017; 1572():71-88. PubMed ID: 28299682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications.
    Martinez-Cisneros CS; Sanchez S; Xi W; Schmidt OG
    Nano Lett; 2014; 14(4):2219-24. PubMed ID: 24655094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review on Microfluidics-Based Impedance Biosensors.
    Chen YS; Huang CH; Pai PC; Seo J; Lei KF
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an aptamer-based impedimetric bioassay using microfluidic system and magnetic separation for protein detection.
    Wang Y; Ye Z; Ping J; Jing S; Ying Y
    Biosens Bioelectron; 2014 Sep; 59():106-11. PubMed ID: 24709326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput label-free characterization of viable, necrotic and apoptotic human lymphoma cells in a coplanar-electrode microfluidic impedance chip.
    De Ninno A; Reale R; Giovinazzo A; Bertani FR; Businaro L; Bisegna P; Matteucci C; Caselli F
    Biosens Bioelectron; 2020 Feb; 150():111887. PubMed ID: 31780405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic charging and control of droplets in microfluidic devices.
    Zhou H; Yao S
    Lab Chip; 2013 Mar; 13(5):962-9. PubMed ID: 23338121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sample concentration and impedance detection on a microfluidic polymer chip.
    Sabounchi P; Morales AM; Ponce P; Lee LP; Simmons BA; Davalos RV
    Biomed Microdevices; 2008 Oct; 10(5):661-70. PubMed ID: 18484178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly efficient preconcentration route for rapid and sensitive detection of endotoxin based on an electrochemical biosensor.
    Ma W; Liu L; Xu Y; Wang L; Chen L; Yan S; Shui L; Wang Z; Li S
    Analyst; 2020 Jun; 145(12):4204-4211. PubMed ID: 32459250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of an Insulation Layer on the Connection Tracks of a Biosensor with Coplanar Electrodes to Increase the Normalized Impedance Variation.
    Alves de Araujo AL; Claudel J; Kourtiche D; Nadi M
    Biosensors (Basel); 2019 Sep; 9(3):. PubMed ID: 31527557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comment on "AC frequency characteristics of coplanar impedance sensors as design parameters" by Jongin Hong, Dae Sung Yoon, Sung Kwan Kim, Tae Song Kim, Sanghyo Kim, Eugene Y. Pak and Kwangsoo No, Lab Chip, 2005, 5, 270.
    Linderholm P; Renaud P
    Lab Chip; 2005 Dec; 5(12):1416-7; author reply 1418. PubMed ID: 16286976
    [No Abstract]   [Full Text] [Related]  

  • 20. A microfluidic-based frequency-multiplexing impedance sensor (FMIS).
    Meissner R; Joris P; Eker B; Bertsch A; Renaud P
    Lab Chip; 2012 Aug; 12(15):2712-8. PubMed ID: 22627460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.