These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24850190)

  • 1. A high-efficiency microfluidic device for size-selective trapping and sorting.
    Kim J; Erath J; Rodriguez A; Yang C
    Lab Chip; 2014 Jul; 14(14):2480-90. PubMed ID: 24850190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated nanopore/microchannel devices for ac electrokinetic trapping of particles.
    Kovarik ML; Jacobson SC
    Anal Chem; 2008 Feb; 80(3):657-64. PubMed ID: 18179245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dynamic microarray device for paired bead-based analysis.
    Teshima T; Ishihara H; Iwai K; Adachi A; Takeuchi S
    Lab Chip; 2010 Sep; 10(18):2443-8. PubMed ID: 20697655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle sorting using a porous membrane in a microfluidic device.
    Wei H; Chueh BH; Wu H; Hall EW; Li CW; Schirhagl R; Lin JM; Zare RN
    Lab Chip; 2011 Jan; 11(2):238-45. PubMed ID: 21057685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping.
    Didar TF; Li K; Tabrizian M; Veres T
    Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications.
    Lin CM; Lai YS; Liu HP; Chen CY; Wo AM
    Anal Chem; 2008 Dec; 80(23):8937-45. PubMed ID: 19551927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic particle detection and sorting in an electrokinetic microfluidic chip.
    Song Y; Peng R; Wang J; Pan X; Sun Y; Li D
    Electrophoresis; 2013 Mar; 34(5):684-90. PubMed ID: 23172422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle manipulation in a microfluidic channel using acoustic trap.
    Jeong JS; Lee JW; Lee CY; Teh SY; Lee A; Shung KK
    Biomed Microdevices; 2011 Aug; 13(4):779-88. PubMed ID: 21603963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications.
    Sochol RD; Lu A; Lei J; Iwai K; Lee LP; Lin L
    Lab Chip; 2014 May; 14(9):1585-94. PubMed ID: 24632685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of the three-dimensional trap stiffness of a dielectrophoretic corral trap.
    Rahman MRU; Kwak TJ; Woehl JC; Chang WJ
    Electrophoresis; 2021 Mar; 42(5):644-655. PubMed ID: 33340119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells.
    Lawrenz A; Nason F; Cooper-White JJ
    Biomicrofluidics; 2012 Jun; 6(2):24112-2411217. PubMed ID: 22655021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.