BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 24850232)

  • 21. Fabrication of 3D high aspect ratio PDMS microfluidic networks with a hybrid stamp.
    Kung YC; Huang KW; Fan YJ; Chiou PY
    Lab Chip; 2015 Apr; 15(8):1861-8. PubMed ID: 25710255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design, fabrication, and characterization of archaeal tetraether free-standing planar membranes in a PDMS- and PCB-based fluidic platform.
    Ren X; Liu K; Zhang Q; Noh HM; Kumbur EC; Yuan WW; Zhou JG; Chong PL
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12618-28. PubMed ID: 24937508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection.
    Karuwan C; Wisitsoraat A; Maturos T; Phokharatkul D; Sappat A; Jaruwongrungsee K; Lomas T; Tuantranont A
    Talanta; 2009 Sep; 79(4):995-1000. PubMed ID: 19615498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-power microfluidic electro-hydraulic pump (EHP).
    Lui C; Stelick S; Cady N; Batt C
    Lab Chip; 2010 Jan; 10(1):74-9. PubMed ID: 20024053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PDMS-glass bonding using grafted polymeric adhesive--alternative process flow for compatibility with patterned biological molecules.
    Beh CW; Zhou W; Wang TH
    Lab Chip; 2012 Oct; 12(20):4120-7. PubMed ID: 22858861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
    Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y
    Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-plasma bonding of PDMS for inexpensive fabrication of microfluidic devices.
    Harris J; Lee H; Vahidi B; Tu C; Cribbs D; Cotman C; Jeon NL
    J Vis Exp; 2007; (9):410. PubMed ID: 18989450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a new contactless dielectrophoresis system for active particle manipulation using movable liquid electrodes.
    Gwon HR; Chang ST; Choi CK; Jung JY; Kim JM; Lee SH
    Electrophoresis; 2014 Jul; 35(14):2014-21. PubMed ID: 24737601
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Air plasma assisting microcontact deprinting and printing for gold thin film and PDMS patterns.
    Gou HL; Xu JJ; Xia XH; Chen HY
    ACS Appl Mater Interfaces; 2010 May; 2(5):1324-30. PubMed ID: 20402458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding.
    Wu H; Huang B; Zare RN
    Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A biocompatible open-surface droplet manipulation platform for detection of multi-nucleotide polymorphism.
    Huang CJ; Fang WF; Ke MS; Chou HY; Yang JT
    Lab Chip; 2014 Jun; 14(12):2057-62. PubMed ID: 24789224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic cell volume sensor with tunable sensitivity.
    Riordon J; Mirzaei M; Godin M
    Lab Chip; 2012 Sep; 12(17):3016-9. PubMed ID: 22782650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications.
    Pavesi A; Piraino F; Fiore GB; Farino KM; Moretti M; Rasponi M
    Lab Chip; 2011 May; 11(9):1593-5. PubMed ID: 21437315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane.
    Lee JH; Song YA; Han J
    Lab Chip; 2008 Apr; 8(4):596-601. PubMed ID: 18369515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of collagen fibrils films formed on polydimethylsiloxane surfaces for microfluidic applications.
    Spurlin TA; Forry SP; Cooksey GA; Plant AL
    Langmuir; 2010 Sep; 26(17):14111-7. PubMed ID: 20666411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Incorporation of electrospun nanofibrous PVDF membranes into a microfluidic chip assembled by PDMS and scotch tape for immunoassays.
    Liu Y; Yang D; Yu T; Jiang X
    Electrophoresis; 2009 Sep; 30(18):3269-75. PubMed ID: 19722208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.