These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 24850496)

  • 1. Sensitive detection of trypsin using liquid-crystal droplet patterns modulated by interactions between poly-L-lysine and a phospholipid monolayer.
    Zhang M; Jang CH
    Chemphyschem; 2014 Aug; 15(12):2569-74. PubMed ID: 24850496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging trypsin activity through changes in the orientation of liquid crystals coupled to the interactions between a polyelectrolyte and a phospholipid layer.
    Hu QZ; Jang CH
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1791-5. PubMed ID: 22394113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid crystal-based detection of thrombin coupled to interactions between a polyelectrolyte and a phospholipid monolayer.
    Zhang M; Jang CH
    Anal Biochem; 2014 Jun; 455():13-9. PubMed ID: 24708935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous-liquid crystal interface.
    Liu D; Hu QZ; Jang CH
    Colloids Surf B Biointerfaces; 2013 Aug; 108():142-6. PubMed ID: 23537831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations.
    Han GR; Jang CH
    Talanta; 2014 Oct; 128():44-50. PubMed ID: 25059128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging the oxidation effects of the Fenton reaction on phospholipids at the interface between aqueous phase and thermotropic liquid crystals.
    Zhang M; Jang CH
    J Biosci Bioeng; 2015 Aug; 120(2):193-8. PubMed ID: 25656072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple strategy to monitor lipase activity using liquid crystal-based sensors.
    Hu QZ; Jang CH
    Talanta; 2012 Sep; 99():36-9. PubMed ID: 22967518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using liquid crystals for the label-free detection of catalase at aqueous-LC interfaces.
    Hu QZ; Jang CH
    J Biotechnol; 2012 Jan; 157(1):223-7. PubMed ID: 22138010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting trypsin at liquid crystal/aqueous interface by using surface-immobilized bovine serum albumin.
    Chuang CH; Lin YC; Chen WL; Chen YH; Chen YX; Chen CM; Shiu HW; Chang LY; Chen CH; Chen CH
    Biosens Bioelectron; 2016 Apr; 78():213-220. PubMed ID: 26613511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ordering transitions in nematic liquid crystals induced by vesicles captured through ligand-receptor interactions.
    Tan LN; Bertics PJ; Abbott NL
    Langmuir; 2011 Feb; 27(4):1419-29. PubMed ID: 21142099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An acetylcholinesterase-based biosensor for the detection of pesticides using liquid crystals confined in microcapillaries.
    Nguyen DK; Jang CH
    Colloids Surf B Biointerfaces; 2021 Apr; 200():111587. PubMed ID: 33529929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(l-lysine)-Coated Liquid Crystal Droplets for Cell-Based Sensing Applications.
    Sidiq S; Prasad GVRK; Mukhopadhaya A; Pal SK
    J Phys Chem B; 2017 Apr; 121(16):4247-4256. PubMed ID: 28263065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A liquid crystal-based sensor for the simple and sensitive detection of cellulase and cysteine.
    Wang Y; Hu Q; Tian T; Gao Y; Yu L
    Colloids Surf B Biointerfaces; 2016 Nov; 147():100-105. PubMed ID: 27497931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of chlorothalonil levels through inhibitory effect on papain activity at protein-decorated liquid crystal interfaces.
    Duong DST; Jang CH
    Mikrochim Acta; 2022 Jul; 189(8):292. PubMed ID: 35879491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid crystals decorated with linear oligopeptide FLAG for applications in immunobiosensors.
    Bi X; Yang KL
    Biosens Bioelectron; 2010 Sep; 26(1):107-11. PubMed ID: 20541929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosensor utilizing a liquid crystal/water interface functionalized with poly(4-cyanobiphenyl-4'-oxyundecylacrylate-b-((2-dimethyl amino) ethyl methacrylate)).
    Omer M; Khan M; Kim YK; Lee JH; Kang IK; Park SY
    Colloids Surf B Biointerfaces; 2014 Sep; 121():400-8. PubMed ID: 25009103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A liquid crystal-based sensor exploiting the aptamer-mediated recognition at the aqueous/liquid crystal interface for sensitive detection of serotonin.
    Ryu JJ; Jang CH
    Biotechnol Appl Biochem; 2023 Dec; 70(6):1972-1982. PubMed ID: 37479671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid crystal-based sensors for the detection of heavy metals using surface-immobilized urease.
    Hu QZ; Jang CH
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):622-6. PubMed ID: 21846586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic anchoring transitions at aqueous-liquid crystal interfaces induced by specific and non-specific binding of vesicles to proteins.
    Tan LN; Abbott NL
    J Colloid Interface Sci; 2015 Jul; 449():452-61. PubMed ID: 25731912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Application of Liquid Crystals as Stimuli-Responsive Sensors.
    Oladepo SA
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.