These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 24850857)
1. A dynamic regulatory network explains ParaHox gene control of gut patterning in the sea urchin. Annunziata R; Arnone MI Development; 2014 Jun; 141(12):2462-72. PubMed ID: 24850857 [TBL] [Abstract][Full Text] [Related]
2. Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut. Cole AG; Rizzo F; Martinez P; Fernandez-Serra M; Arnone MI Development; 2009 Feb; 136(4):541-9. PubMed ID: 19144720 [TBL] [Abstract][Full Text] [Related]
3. An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes. Solek CM; Oliveri P; Loza-Coll M; Schrankel CS; Ho EC; Wang G; Rast JP Dev Biol; 2013 Oct; 382(1):280-92. PubMed ID: 23792116 [TBL] [Abstract][Full Text] [Related]
4. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo. Oliveri P; Walton KD; Davidson EH; McClay DR Development; 2006 Nov; 133(21):4173-81. PubMed ID: 17038513 [TBL] [Abstract][Full Text] [Related]
5. Genetic organization and embryonic expression of the ParaHox genes in the sea urchin S. purpuratus: insights into the relationship between clustering and colinearity. Arnone MI; Rizzo F; Annunciata R; Cameron RA; Peterson KJ; Martínez P Dev Biol; 2006 Dec; 300(1):63-73. PubMed ID: 16959236 [TBL] [Abstract][Full Text] [Related]
6. The dynamic gene expression patterns of transcription factors constituting the sea urchin aboral ectoderm gene regulatory network. Chen JH; Luo YJ; Su YH Dev Dyn; 2011 Jan; 240(1):250-60. PubMed ID: 21181943 [TBL] [Abstract][Full Text] [Related]
7. Fluorescent in situ hybridization reveals multiple expression domains for SpBrn1/2/4 and identifies a unique ectodermal cell type that co-expresses the ParaHox gene SpLox. Cole AG; Arnone MI Gene Expr Patterns; 2009 Jun; 9(5):324-8. PubMed ID: 19250980 [TBL] [Abstract][Full Text] [Related]
8. The role of Cdx genes in the gut and in axial development. Beck F; Stringer EJ Biochem Soc Trans; 2010 Apr; 38(2):353-7. PubMed ID: 20298182 [TBL] [Abstract][Full Text] [Related]
9. Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo. Arenas-Mena C; Cameron RA; Davidson EH Dev Growth Differ; 2006 Sep; 48(7):463-72. PubMed ID: 16961593 [TBL] [Abstract][Full Text] [Related]
10. Evolutionary implications of morphogenesis and molecular patterning of the blind gut in the planarian Schmidtea polychroa. Martín-Durán JM; Romero R Dev Biol; 2011 Apr; 352(1):164-76. PubMed ID: 21295562 [TBL] [Abstract][Full Text] [Related]
11. Integrative multi-omics increase resolution of the sea urchin posterior gut gene regulatory network at single-cell level. Voronov D; Paganos P; Magri MS; Cuomo C; Maeso I; Gómez-Skarmeta JL; Arnone MI Development; 2024 Aug; 151(16):. PubMed ID: 39058236 [TBL] [Abstract][Full Text] [Related]
12. Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase. Calestani C; Rogers DJ Dev Biol; 2010 Apr; 340(2):249-55. PubMed ID: 20122918 [TBL] [Abstract][Full Text] [Related]
13. The transcriptome of the sea urchin embryo. Samanta MP; Tongprasit W; Istrail S; Cameron RA; Tu Q; Davidson EH; Stolc V Science; 2006 Nov; 314(5801):960-2. PubMed ID: 17095694 [TBL] [Abstract][Full Text] [Related]
14. Developmental cis-regulatory analysis of the cyclin D gene in the sea urchin Strongylocentrotus purpuratus. McCarty CM; Coffman JA Biochem Biophys Res Commun; 2013 Oct; 440(3):413-8. PubMed ID: 24090975 [TBL] [Abstract][Full Text] [Related]
15. Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics. Gildor T; Ben-Tabou de-Leon S PLoS Genet; 2015 Jul; 11(7):e1005435. PubMed ID: 26230518 [TBL] [Abstract][Full Text] [Related]
16. The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center. Wei Z; Yaguchi J; Yaguchi S; Angerer RC; Angerer LM Development; 2009 Apr; 136(7):1179-89. PubMed ID: 19270175 [TBL] [Abstract][Full Text] [Related]
17. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587 [TBL] [Abstract][Full Text] [Related]
18. Conservation of ParaHox genes' function in patterning of the digestive tract of the marine gastropod Gibbula varia. Samadi L; Steiner G BMC Dev Biol; 2010 Jul; 10():74. PubMed ID: 20624311 [TBL] [Abstract][Full Text] [Related]
19. Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO₂ seawater conditions. Hammond LM; Hofmann GE J Exp Biol; 2012 Jul; 215(Pt 14):2445-54. PubMed ID: 22723484 [TBL] [Abstract][Full Text] [Related]
20. The Cdx4 mutation affects axial development and reveals an essential role of Cdx genes in the ontogenesis of the placental labyrinth in mice. van Nes J; de Graaff W; Lebrin F; Gerhard M; Beck F; Deschamps J Development; 2006 Feb; 133(3):419-28. PubMed ID: 16396910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]