BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24850857)

  • 1. A dynamic regulatory network explains ParaHox gene control of gut patterning in the sea urchin.
    Annunziata R; Arnone MI
    Development; 2014 Jun; 141(12):2462-72. PubMed ID: 24850857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut.
    Cole AG; Rizzo F; Martinez P; Fernandez-Serra M; Arnone MI
    Development; 2009 Feb; 136(4):541-9. PubMed ID: 19144720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes.
    Solek CM; Oliveri P; Loza-Coll M; Schrankel CS; Ho EC; Wang G; Rast JP
    Dev Biol; 2013 Oct; 382(1):280-92. PubMed ID: 23792116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.
    Oliveri P; Walton KD; Davidson EH; McClay DR
    Development; 2006 Nov; 133(21):4173-81. PubMed ID: 17038513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic organization and embryonic expression of the ParaHox genes in the sea urchin S. purpuratus: insights into the relationship between clustering and colinearity.
    Arnone MI; Rizzo F; Annunciata R; Cameron RA; Peterson KJ; Martínez P
    Dev Biol; 2006 Dec; 300(1):63-73. PubMed ID: 16959236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamic gene expression patterns of transcription factors constituting the sea urchin aboral ectoderm gene regulatory network.
    Chen JH; Luo YJ; Su YH
    Dev Dyn; 2011 Jan; 240(1):250-60. PubMed ID: 21181943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent in situ hybridization reveals multiple expression domains for SpBrn1/2/4 and identifies a unique ectodermal cell type that co-expresses the ParaHox gene SpLox.
    Cole AG; Arnone MI
    Gene Expr Patterns; 2009 Jun; 9(5):324-8. PubMed ID: 19250980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of Cdx genes in the gut and in axial development.
    Beck F; Stringer EJ
    Biochem Soc Trans; 2010 Apr; 38(2):353-7. PubMed ID: 20298182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo.
    Arenas-Mena C; Cameron RA; Davidson EH
    Dev Growth Differ; 2006 Sep; 48(7):463-72. PubMed ID: 16961593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary implications of morphogenesis and molecular patterning of the blind gut in the planarian Schmidtea polychroa.
    Martín-Durán JM; Romero R
    Dev Biol; 2011 Apr; 352(1):164-76. PubMed ID: 21295562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase.
    Calestani C; Rogers DJ
    Dev Biol; 2010 Apr; 340(2):249-55. PubMed ID: 20122918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transcriptome of the sea urchin embryo.
    Samanta MP; Tongprasit W; Istrail S; Cameron RA; Tu Q; Davidson EH; Stolc V
    Science; 2006 Nov; 314(5801):960-2. PubMed ID: 17095694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental cis-regulatory analysis of the cyclin D gene in the sea urchin Strongylocentrotus purpuratus.
    McCarty CM; Coffman JA
    Biochem Biophys Res Commun; 2013 Oct; 440(3):413-8. PubMed ID: 24090975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics.
    Gildor T; Ben-Tabou de-Leon S
    PLoS Genet; 2015 Jul; 11(7):e1005435. PubMed ID: 26230518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center.
    Wei Z; Yaguchi J; Yaguchi S; Angerer RC; Angerer LM
    Development; 2009 Apr; 136(7):1179-89. PubMed ID: 19270175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation of ParaHox genes' function in patterning of the digestive tract of the marine gastropod Gibbula varia.
    Samadi L; Steiner G
    BMC Dev Biol; 2010 Jul; 10():74. PubMed ID: 20624311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO₂ seawater conditions.
    Hammond LM; Hofmann GE
    J Exp Biol; 2012 Jul; 215(Pt 14):2445-54. PubMed ID: 22723484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Cdx4 mutation affects axial development and reveals an essential role of Cdx genes in the ontogenesis of the placental labyrinth in mice.
    van Nes J; de Graaff W; Lebrin F; Gerhard M; Beck F; Deschamps J
    Development; 2006 Feb; 133(3):419-28. PubMed ID: 16396910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryonic pattern formation without morphogens.
    Bolouri H
    Bioessays; 2008 May; 30(5):412-7. PubMed ID: 18404688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.