BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 24850913)

  • 1. Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines.
    Rother J; Nöding H; Mey I; Janshoff A
    Open Biol; 2014 May; 4(5):140046. PubMed ID: 24850913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy.
    Wang Y; Xu C; Jiang N; Zheng L; Zeng J; Qiu C; Yang H; Xie S
    Scanning; 2016 Nov; 38(6):558-563. PubMed ID: 26750438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AFM indentation study of breast cancer cells.
    Li QS; Lee GY; Ong CN; Lim CT
    Biochem Biophys Res Commun; 2008 Oct; 374(4):609-13. PubMed ID: 18656442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells.
    Nguyen N; Shao Y; Wineman A; Fu J; Waas A
    Math Biosci; 2016 Jul; 277():77-88. PubMed ID: 27107978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microrheological comparison of melanoma cells by atomic force microscopy.
    Brás MM; Sousa A; Cruz TB; Michalewski J; Leite M; Sousa SR; Granja PL; Radmacher M
    J Biol Phys; 2024 Mar; 50(1):55-69. PubMed ID: 38240860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy.
    Chim YH; Mason LM; Rath N; Olson MF; Tassieri M; Yin H
    Sci Rep; 2018 Sep; 8(1):14462. PubMed ID: 30262873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy.
    Mahaffy RE; Park S; Gerde E; Käs J; Shih CK
    Biophys J; 2004 Mar; 86(3):1777-93. PubMed ID: 14990504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.
    Efremov YM; Wang WH; Hardy SD; Geahlen RL; Raman A
    Sci Rep; 2017 May; 7(1):1541. PubMed ID: 28484282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation.
    Coceano G; Yousafzai MS; Ma W; Ndoye F; Venturelli L; Hussain I; Bonin S; Niemela J; Scoles G; Cojoc D; Ferrari E
    Nanotechnology; 2016 Feb; 27(6):065102. PubMed ID: 26683826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodologies and models for measuring viscoelastic properties of cancer cells: Towards a universal classification.
    Ovalle-Flores L; Rodríguez-Nieto M; Zárate-Triviño D; Rodríguez-Padilla C; Menchaca JL
    J Mech Behav Biomed Mater; 2023 Apr; 140():105734. PubMed ID: 36848744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Breast Cancer Aggressiveness by Cell Mechanics.
    Zbiral B; Weber A; Vivanco MD; Toca-Herrera JL
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscopy studies on cellular elastic and viscoelastic properties.
    Li M; Liu L; Xi N; Wang Y
    Sci China Life Sci; 2018 Jan; 61(1):57-67. PubMed ID: 28667516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy.
    Corbin EA; Kong F; Lim CT; King WP; Bashir R
    Lab Chip; 2015 Feb; 15(3):839-47. PubMed ID: 25473785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modeling of living cells for AFM indentation-based biomechanical characterization.
    Liu Y; Mollaeian K; Ren J
    Micron; 2019 Jan; 116():108-115. PubMed ID: 30366196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy.
    Calzado-Martín A; Encinar M; Tamayo J; Calleja M; San Paulo A
    ACS Nano; 2016 Mar; 10(3):3365-74. PubMed ID: 26901115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BRMS1 expression alters the ultrastructural, biomechanical and biochemical properties of MDA-MB-435 human breast carcinoma cells: an AFM and Raman microspectroscopy study.
    Wu Y; McEwen GD; Harihar S; Baker SM; DeWald DB; Zhou A
    Cancer Lett; 2010 Jul; 293(1):82-91. PubMed ID: 20083343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular particle tracking as a tool for tumor cell characterization.
    Li Y; Schnekenburger J; Duits MH
    J Biomed Opt; 2009; 14(6):064005. PubMed ID: 20059243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods.
    Cartagena A; Raman A
    Biophys J; 2014 Mar; 106(5):1033-43. PubMed ID: 24606928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic force microscopy of 3T3 and SW-13 cell lines: an investigation of cell elasticity changes due to fixation.
    Codan B; Martinelli V; Mestroni L; Sbaizero O
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3303-8. PubMed ID: 23706214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.