These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 24850951)
1. Structure and function of atypically coordinated enzymatic mononuclear non-heme-Fe(II) centers. Buongiorno D; Straganz GD Coord Chem Rev; 2013 Jan; 257(2):541-563. PubMed ID: 24850951 [TBL] [Abstract][Full Text] [Related]
2. The three-his triad in Dke1: comparisons to the classical facial triad. Diebold AR; Neidig ML; Moran GR; Straganz GD; Solomon EI Biochemistry; 2010 Aug; 49(32):6945-52. PubMed ID: 20695531 [TBL] [Abstract][Full Text] [Related]
3. Variations of the 2-His-1-carboxylate theme in mononuclear non-heme FeII oxygenases. Straganz GD; Nidetzky B Chembiochem; 2006 Oct; 7(10):1536-48. PubMed ID: 16858718 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, X-ray Structures, Electronic Properties, and O Fischer AA; Stracey N; Lindeman SV; Brunold TC; Fiedler AT Inorg Chem; 2016 Nov; 55(22):11839-11853. PubMed ID: 27801576 [TBL] [Abstract][Full Text] [Related]
5. CD and MCD of CytC3 and taurine dioxygenase: role of the facial triad in alpha-KG-dependent oxygenases. Neidig ML; Brown CD; Light KM; Fujimori DG; Nolan EM; Price JC; Barr EW; Bollinger JM; Krebs C; Walsh CT; Solomon EI J Am Chem Soc; 2007 Nov; 129(46):14224-31. PubMed ID: 17967013 [TBL] [Abstract][Full Text] [Related]
7. Visualizing the substrate-, superoxo-, alkylperoxo-, and product-bound states at the nonheme Fe(II) site of homogentisate dioxygenase. Jeoung JH; Bommer M; Lin TY; Dobbek H Proc Natl Acad Sci U S A; 2013 Jul; 110(31):12625-30. PubMed ID: 23858455 [TBL] [Abstract][Full Text] [Related]
8. Flavonolate complexes of M(II) (M = Mn, Fe, Co, Ni, Cu, and Zn). Structural and functional models for the ES (enzyme-substrate) complex of quercetin 2,3-dioxygenase. Sun YJ; Huang QQ; Tano T; Itoh S Inorg Chem; 2013 Oct; 52(19):10936-48. PubMed ID: 24044415 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications. Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574 [TBL] [Abstract][Full Text] [Related]
10. Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases. Fernandez RL; Juntunen ND; Brunold TC Acc Chem Res; 2022 Sep; 55(17):2480-2490. PubMed ID: 35994511 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic and computational characterization of substrate-bound mouse cysteine dioxygenase: nature of the ferrous and ferric cysteine adducts and mechanistic implications. Gardner JD; Pierce BS; Fox BG; Brunold TC Biochemistry; 2010 Jul; 49(29):6033-41. PubMed ID: 20397631 [TBL] [Abstract][Full Text] [Related]
12. Set of Fe(II)-3-Hydroxyflavonolate Enzyme-Substrate Model Complexes of Atypically Coordinated Mononuclear Non-Heme Fe(II)-Dependent Quercetin 2,4-Dioxygenase. Sun YJ; Huang QQ; Zhang JJ ACS Omega; 2017 Sep; 2(9):5850-5860. PubMed ID: 31457842 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic investigation of iron(III) cysteamine dioxygenase in the presence of substrate (analogs): implications for the nature of substrate-bound reaction intermediates. Fernandez RL; Juntunen ND; Fox BG; Brunold TC J Biol Inorg Chem; 2021 Dec; 26(8):947-955. PubMed ID: 34580769 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and characterization of Fe(II) β-diketonato complexes with relevance to acetylacetone dioxygenase: insights into the electronic properties of the 3-histidine facial triad. Park H; Baus JS; Lindeman SV; Fiedler AT Inorg Chem; 2011 Dec; 50(23):11978-89. PubMed ID: 22034915 [TBL] [Abstract][Full Text] [Related]
15. The first direct characterization of a high-valent iron intermediate in the reaction of an alpha-ketoglutarate-dependent dioxygenase: a high-spin FeIV complex in taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli. Price JC; Barr EW; Tirupati B; Bollinger JM; Krebs C Biochemistry; 2003 Jun; 42(24):7497-508. PubMed ID: 12809506 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic analysis of the mammalian enzyme cysteine dioxygenase. Miller JR; Brunold TC Methods Enzymol; 2023; 682():101-135. PubMed ID: 36948699 [TBL] [Abstract][Full Text] [Related]
18. Steady-state and transient kinetic analyses of taurine/alpha-ketoglutarate dioxygenase: effects of oxygen concentration, alternative sulfonates, and active-site variants on the FeIV-oxo intermediate. Grzyska PK; Ryle MJ; Monterosso GR; Liu J; Ballou DP; Hausinger RP Biochemistry; 2005 Mar; 44(10):3845-55. PubMed ID: 15751960 [TBL] [Abstract][Full Text] [Related]
19. Stopped-flow kinetic analysis of Escherichia coli taurine/alpha-ketoglutarate dioxygenase: interactions with alpha-ketoglutarate, taurine, and oxygen. Ryle MJ; Padmakumar R; Hausinger RP Biochemistry; 1999 Nov; 38(46):15278-86. PubMed ID: 10563813 [TBL] [Abstract][Full Text] [Related]
20. The Fe(II)/α-ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers. Knauer SH; Hartl-Spiegelhauer O; Schwarzinger S; Hänzelmann P; Dobbek H FEBS J; 2012 Mar; 279(5):816-31. PubMed ID: 22221834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]