These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 2485096)

  • 21. Fluence and wavelength requirements for Arabidopsis CAB gene induction by different phytochromes.
    Hamazato F; Shinomura T; Hanzawa H; Chory J; Furuya M
    Plant Physiol; 1997 Dec; 115(4):1533-40. PubMed ID: 9414562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-dependent accumulation and localization of photosystem II proteins in maize.
    Sutton A; Sieburth LE; Bennett J
    Eur J Biochem; 1987 May; 164(3):571-8. PubMed ID: 3552671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The phytochrome-controlled accumulation of mRNA sequences encoding the light-harvesting chlorophyll a/b protein of barley (Hordeum vulgare L.).
    Gollmer I; Apel K
    Eur J Biochem; 1983 Jun; 133(2):309-13. PubMed ID: 6343087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular analysis of an aurea photosynthetic mutant (Su/Su) in tobacco: LHCP depletion leads to pleiotropic mutant phenotypes.
    Kawata EE; Cheung AY
    EMBO J; 1990 Dec; 9(12):4197-203. PubMed ID: 2249672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosynthesis of the light-harvesting chlorophyll a/b protein. Control of messenger RNA activity by light.
    Cuming AC; Bennett J
    Eur J Biochem; 1981 Aug; 118(1):71-80. PubMed ID: 6169525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of tobacco genes for light-harvesting chlorophyll a/b binding proteins of photosystem II is controlled by two circadian oscillators in a developmentally regulated fashion.
    Kolar C; Adám E; Schäfer E; Nagy F
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2174-8. PubMed ID: 7892242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A DNA binding activity for one of two closely defined phytochrome regulatory elements in an Lhcb promoter is more abundant in etiolated than in green plants.
    Degenhardt J; Tobin EM
    Plant Cell; 1996 Jan; 8(1):31-41. PubMed ID: 8597658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytochrome control of in vitro transcription of specific genes in isolated nuclei from barley (Hordeum vulgare).
    Mösinger E; Batschauer A; Schäfer E; Apel K
    Eur J Biochem; 1985 Feb; 147(1):137-42. PubMed ID: 3882421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FIN5 positively regulates far-red light responses in Arabidopsis thaliana.
    Cho DS; Hong SH; Nam HG; Soh MS
    Plant Cell Physiol; 2003 Jun; 44(6):565-72. PubMed ID: 12826621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Post-transcriptional and post-translational regulatory steps are crucial in controlling the appearance and stability of thylakoid polypeptides during the transition of etiolated tobacco seedlings to white light.
    Palomares R; Herrmann RG; Oelmüller R
    Eur J Biochem; 1993 Oct; 217(1):345-52. PubMed ID: 8223572
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shedding light on clock controlled cab gene transcription in higher plants.
    Kay SA
    Semin Cell Biol; 1993 Apr; 4(2):81-6. PubMed ID: 8318699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The light-dependent control of chloroplast development in barley (Hordeum vulgare L).
    Apel K; Gollmer I; Batschauer A
    J Cell Biochem; 1983; 23(1-4):181-9. PubMed ID: 6202706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytochrome control of phototropism and chlorophyll accumulation in the apical cells of protonemal filaments of wildtype and an aphototropic mutant of the moss Ceratodon purpureus.
    Lamparter T; Esch H; Cove D; Hartmann E
    Plant Cell Physiol; 1997 Jan; 38(1):51-8. PubMed ID: 11536802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The 23 KDa polypeptide of the photosynthetic oxygen-evolving complex from mustard seedlings (Sinapis alba L.). Nucleotide sequence of cDNA and evidence for phytochrome control of its mRNA abundance.
    Wenng A; Ehmann B; Schäfer E
    FEBS Lett; 1989 Mar; 246(1-2):140-4. PubMed ID: 2651153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correct blue-light regulation of pea Lhcb genes in an Arabidopsis background.
    Tilghman JA; Gao J; Anderson MB; Kaufman LS
    Plant Mol Biol; 1997 Oct; 35(3):293-302. PubMed ID: 9349253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of phytochrome in regulation of transpiration: red-/far red-induced responses in the chlorophyll-deficient mutant of pea.
    Sokolskaya SV; Sveshnikova NV; Kochetova GV; Solovchenko AE; Gostimski SA; Bashtanova OB
    Funct Plant Biol; 2003 Jan; 30(12):1249-1259. PubMed ID: 32689106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The aurea mutant of tomato is deficient in spectrophotometrically and immunochemically detectable phytochrome.
    Parks BM; Jones AM; Adamse P; Koornneef M; Kendrick RE; Quail PH
    Plant Mol Biol; 1987 Mar; 9(2):97-107. PubMed ID: 24276899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acclimation of Arabidopsis thaliana to the light environment: regulation of chloroplast composition.
    Walters RG; Horton P
    Planta; 1995; 197(3):475-81. PubMed ID: 8580761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and characterization of rice phytochrome A mutants.
    Takano M; Kanegae H; Shinomura T; Miyao A; Hirochika H; Furuya M
    Plant Cell; 2001 Mar; 13(3):521-34. PubMed ID: 11251094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of synthesis of the photosystem I reaction center.
    Vierling E; Alberte RS
    J Cell Biol; 1983 Dec; 97(6):1806-14. PubMed ID: 6358234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.