These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24851255)

  • 21. Mammalian cell culture scale-up and fed-batch control using automated flow cytometry.
    Sitton G; Srienc F
    J Biotechnol; 2008 Jun; 135(2):174-80. PubMed ID: 18490070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality.
    Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A
    J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synchronous fluorescence spectroscopy as a novel tool to enable PAT applications in bioprocesses.
    Teixeira AP; Duarte TM; Carrondo MJ; Alves PM
    Biotechnol Bioeng; 2011 Aug; 108(8):1852-61. PubMed ID: 21391211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Turbidimetry and Dielectric Spectroscopy as Process Analytical Technologies for Mammalian and Insect Cell Cultures.
    Käßer L; Zitzmann J; Grein T; Weidner T; Salzig D; Czermak P
    Methods Mol Biol; 2020; 2095():335-364. PubMed ID: 31858478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The in-line measurement of plant cell biomass using radio frequency impedance spectroscopy as a component of process analytical technology.
    Holland T; Blessing D; Hellwig S; Sack M
    Biotechnol J; 2013 Oct; 8(10):1231-40. PubMed ID: 24039008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures.
    Amanullah A; Otero JM; Mikola M; Hsu A; Zhang J; Aunins J; Schreyer HB; Hope JA; Russo AP
    Biotechnol Bioeng; 2010 May; 106(1):57-67. PubMed ID: 20073088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Novel Application for Low Frequency Electrochemical Impedance Spectroscopy as an Online Process Monitoring Tool for Viable Cell Concentrations.
    Slouka C; Wurm DJ; Brunauer G; Welzl-Wachter A; Spadiut O; Fleig J; Herwig C
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27845720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mid-infrared spectroscopy-based analysis of mammalian cell culture parameters.
    Capito F; Zimmer A; Skudas R
    Biotechnol Prog; 2015; 31(2):578-84. PubMed ID: 25504543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of single cell property distributions in Chinese hamster ovary cell cultures monitored and controlled with automated flow cytometry.
    Kacmar J; Srienc F
    J Biotechnol; 2005 Dec; 120(4):410-20. PubMed ID: 16144728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Process analytical technology (PAT) in insect and mammalian cell culture processes: dielectric spectroscopy and focused beam reflectance measurement (FBRM).
    Druzinec D; Weiss K; Elseberg C; Salzig D; Kraume M; Pörtner R; Czermak P
    Methods Mol Biol; 2014; 1104():313-41. PubMed ID: 24297424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of spectroscopy technologies for improved monitoring of cell culture processes in miniature bioreactors.
    Rowland-Jones RC; van den Berg F; Racher AJ; Martin EB; Jaques C
    Biotechnol Prog; 2017 Mar; 33(2):337-346. PubMed ID: 28271638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables.
    Clavaud M; Roggo Y; Von Daeniken R; Liebler A; Schwabe JO
    Talanta; 2013 Jul; 111():28-38. PubMed ID: 23622522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid at-line early cell death quantification using capacitance spectroscopy.
    Wu S; Ketcham SA; Corredor CC; Both D; Drennen JK; Anderson CA
    Biotechnol Bioeng; 2022 Mar; 119(3):857-867. PubMed ID: 34927241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated flow cytometry for monitoring CHO cell cultures.
    Kuystermans D; Mohd A; Al-Rubeai M
    Methods; 2012 Mar; 56(3):358-65. PubMed ID: 22445707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feed development for fed-batch CHO production process by semisteady state analysis.
    Khattak SF; Xing Z; Kenty B; Koyrakh I; Li ZJ
    Biotechnol Prog; 2010; 26(3):797-804. PubMed ID: 20014108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In-situ near infrared spectroscopy to monitor key analytes in mammalian cell cultivation.
    Arnold SA; Crowley J; Woods N; Harvey LM; McNeil B
    Biotechnol Bioeng; 2003 Oct; 84(1):13-9. PubMed ID: 12910538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dielectric monitoring and respirometric activity of a high cell density activated sludge.
    Pajoum-Shariati F; Sarrafzadeh MH; Mehrnia MR; Sarzana G; Ghommidh C; Grasmick A; Heran M
    Environ Technol; 2014; 35(1-4):425-31. PubMed ID: 24600883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determining the linear correlation between dielectric spectroscopy and viable biomass concentration in filamentous fungal fermentations.
    Magnússon A; Pajander J; Sin G; Stocks S
    Biotechnol Lett; 2023 Aug; 45(8):931-938. PubMed ID: 37227599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Development and application of perfusion culture producing seed cells in WAVE bioreactor].
    Yang J; Sui L
    Sheng Wu Gong Cheng Xue Bao; 2012 Mar; 28(3):358-67. PubMed ID: 22712394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Simple Method to Reduce both Lactic Acid and Ammonium Production in Industrial Animal Cell Culture.
    Freund NW; Croughan MS
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29382079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.