These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24851332)

  • 21. Water-oil separation performance of technical textiles used for marine pollution disasters.
    Seddighi M; Hejazi SM
    Mar Pollut Bull; 2015 Jul; 96(1-2):286-93. PubMed ID: 25963573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilization of nSiO2, fly ash, and nSiO 2/fly ash composite for the remediation of triphenyltin (TPT) from contaminated seawater.
    Ayanda OS; Fatoki OS; Adekola FA; Ximba BJ
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):8172-81. PubMed ID: 23649603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and oil absorbency of kapok-g-butyl methacrylate.
    Wang J; Zheng Y; Wang A
    Environ Technol; 2018 May; 39(9):1089-1095. PubMed ID: 28463052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effective oil removal from water by magnetically driven superhydrophobic and oleophilic magnetic titania nanotubes.
    Patowary M; Ananthakrishnan R; Pathak K
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18063-18072. PubMed ID: 28624944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosorbent with superhydrophobicity and superoleophilicity for spilled oil removal.
    Peng D; Li H; Li WJ; Zheng L
    Ecotoxicol Environ Saf; 2021 Feb; 209():111803. PubMed ID: 33360216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly recyclable superhydrophobic sponge suitable for the selective sorption of high viscosity oil from water.
    Wang J; Geng G
    Mar Pollut Bull; 2015 Aug; 97(1-2):118-124. PubMed ID: 26092604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superhydrophobic graphene-based sponge as a novel sorbent for crude oil removal under various environmental conditions.
    Shiu RF; Lee CL; Hsieh PY; Chen CS; Kang YY; Chin WC; Tai NH
    Chemosphere; 2018 Sep; 207():110-117. PubMed ID: 29793022
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route.
    Wang J; Wang H; Geng G
    Mar Pollut Bull; 2018 Feb; 127():108-116. PubMed ID: 29475642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research and application of kapok fiber as an absorbing material: a mini review.
    Zheng Y; Wang J; Zhu Y; Wang A
    J Environ Sci (China); 2015 Jan; 27():21-32. PubMed ID: 25597659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oil Adsorption Kinetics of Calcium Stearate-Coated Kapok Fibers.
    Blaquera ALM; Herrera MU; Manalo RD; Maguyon-Detras MC; Futalan CCM; Balela MDL
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oil sorption and retention capacities of thermally-bonded hybrid nonwovens prepared from cotton, kapok, milkweed and polypropylene fibers.
    Thilagavathi G; Praba Karan C; Das D
    J Environ Manage; 2018 Aug; 219():340-349. PubMed ID: 29753978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polycyclic aromatic hydrocarbon removal from water by natural fiber sorption.
    Khan E; Khaodhir S; Rotwiron P
    Water Environ Res; 2007 Aug; 79(8):901-11. PubMed ID: 17824537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics and equilibrium models for the sorption of tributyltin to nZnO, activated carbon and nZnO/activated carbon composite in artificial seawater.
    Ayanda OS; Fatoki OS; Adekola FA; Ximba BJ
    Mar Pollut Bull; 2013 Jul; 72(1):222-30. PubMed ID: 23643341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfacial tension between oil and seawater as a function of dispersant dosage.
    Brandvik PJ; Daling PS; Leirvik F; Krause DF
    Mar Pollut Bull; 2019 Jun; 143():109-114. PubMed ID: 31789144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Influence of SDBS on sorption behaviors of heavy oil on Jiaozhou Bay sediment].
    Cao XY; Han H; Yang GP
    Huan Jing Ke Xue; 2011 Oct; 32(10):3011-7. PubMed ID: 22279917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars.
    Yi S; Gao B; Sun Y; Wu J; Shi X; Wu B; Hu X
    Chemosphere; 2016 May; 150():694-701. PubMed ID: 26796588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low cost bio-sorbent 'wheat bran' for the removal of cadmium from wastewater: kinetic and equilibrium studies.
    Singh KK; Singh AK; Hasan SH
    Bioresour Technol; 2006 May; 97(8):994-1001. PubMed ID: 15993581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater.
    Liu G; Zhu Z; Yang Y; Sun Y; Yu F; Ma J
    Environ Pollut; 2019 Mar; 246():26-33. PubMed ID: 30529938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modification Strategies of Kapok Fiber Composites and Its Application in the Adsorption of Heavy Metal Ions and Dyes from Aqueous Solutions: A Systematic Review.
    Futalan CM; Choi AES; Soriano HGO; Cabacungan MKB; Millare JC
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A sustainable nanocellulose-based superabsorbent from kapok fiber with advanced oil absorption and recyclability.
    Zhang H; Zhao T; Chen Y; Hu X; Xu Y; Xu G; Wang F; Wang J; Shen H
    Carbohydr Polym; 2022 Feb; 278():118948. PubMed ID: 34973765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.