These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2485169)

  • 1. Behavioristic study of 14C-lindane in the aquatic ecosystem model.
    Enan E; el-Hawari B; el-Masry M; Enan O
    J Egypt Public Health Assoc; 1989; 64(1-2):171-85. PubMed ID: 2485169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioaccumulation and elimination of 14C-lindane by Enchytraeus albidus in artificial (OECD) and a natural soil.
    de Barros Amorim MJ; Sousa JP; Nogueira AJ; Soares AM
    Chemosphere; 2002 Oct; 49(3):323-9. PubMed ID: 12363312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms.
    Phillips TM; Seech AG; Lee H; Trevors JT
    Biodegradation; 2005 Aug; 16(4):363-92. PubMed ID: 15865341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assimilation efficiency and toxicokinetics of 14C-lindane in the terrestrial isopod Porcellionides pruinosus: the role of isopods in degradation of persistent soil pollutants.
    Loureiro S; Sousa JP; Nogueira AJ; Soares AM
    Ecotoxicology; 2002 Dec; 11(6):481-90. PubMed ID: 12521143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pH on the toxicity and uptake of [14C]lindane in the midge, Chironomus riparius.
    Fisher SW
    Ecotoxicol Environ Saf; 1985 Oct; 10(2):202-8. PubMed ID: 2417806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent toxicokinetics of [14C]lindane in the terrestrial isopod Porcellionides pruinosus.
    Santos SA; Sousa JP; Frost M; Soares AM
    Environ Toxicol Chem; 2003 Oct; 22(10):2221-7. PubMed ID: 14551982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaccumulation and toxicity of copper in outdoor freshwater microcosms.
    Hoang TC; Pryor RL; Rand GM; Frakes RA
    Ecotoxicol Environ Saf; 2011 May; 74(4):1011-20. PubMed ID: 21345490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conceptual approaches for the development of dynamic specific activity models of 14C transfer from surface water to humans.
    Sheppard SC; Ciffroy P; Siclet F; Damois C; Sheppard MI; Stephenson M
    J Environ Radioact; 2006; 87(1):32-51. PubMed ID: 16375996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature and pH effect on lindane removal by Streptomyces sp. M7 in soil extract.
    Benimeli CS; González AJ; Chaile AP; Amoroso MJ
    J Basic Microbiol; 2007 Dec; 47(6):468-73. PubMed ID: 18072247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature and pH effects on biodegradation of hexachlorocyclohexane isomers in water and a soil slurry.
    Siddique T; Okeke BC; Arshad M; Frankenberger WT
    J Agric Food Chem; 2002 Aug; 50(18):5070-6. PubMed ID: 12188610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [14C-extractable residue, C-bound residue and mineralization of 14C-labeled metsulfuron-methyl in soils].
    Ye Q; Wu J; Sun J
    Huan Jing Ke Xue; 2002 Nov; 23(6):62-8. PubMed ID: 12619280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bound 14C-metsulfuron-methyl residue in soils.
    Ye QF; Ding W; Wang HY; Han AL; Sun JH
    J Environ Sci (China); 2005; 17(2):215-9. PubMed ID: 16295892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of a model ecosystem with DDT.
    Virtanen MT; Roos A; Arstila AU; Hattula ML
    Arch Environ Contam Toxicol; 1980; 9(4):491-504. PubMed ID: 7406553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of 14CO2 flux at soil-atmosphere interface and distribution of 14C in forest ecosystem.
    Koarashi J; Amano H; Andoh M; Iida T; Moriizumi J
    J Environ Radioact; 2002; 60(3):249-61. PubMed ID: 12054039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of 14C and arsenic derived from (14C)cacodylic acid in an aquatic ecosystem.
    Schuth CK; Isensee AR; Woolson EA; Kearney PC
    J Agric Food Chem; 1974; 22(6):999-1003. PubMed ID: 4430814
    [No Abstract]   [Full Text] [Related]  

  • 16. The dynamics of diquat in a model eco-system.
    Shaw B; Hopke PK
    Environ Lett; 1975; 8(4):325-35. PubMed ID: 1149702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of trichloroacetic acid in environmental studies using carbon 14 and chlorine 36.
    Matucha M; Rohlenová J; Forczek ST; Uhlírová H; Gryndler M; Fuksová K; Schröder P
    Chemosphere; 2006 Jun; 63(11):1924-32. PubMed ID: 16313943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of carbaryl and 3,5-xylyl methylcarbamate in an aquatic model ecosystem.
    Kanazawa J; Isensee AR; Kearney PC
    J Agric Food Chem; 1975; 23(4):760-3. PubMed ID: 806624
    [No Abstract]   [Full Text] [Related]  

  • 19. Interaction between lindane and micorbes in soils.
    Tu CM
    Arch Microbiol; 1975 Oct; 105(2):131-4. PubMed ID: 54153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced bioremediation of lindane-contaminated soils through microbial bioaugmentation assisted by biostimulation with sugarcane filter cake.
    Raimondo EE; Aparicio JD; Bigliardo AL; Fuentes MS; Benimeli CS
    Ecotoxicol Environ Saf; 2020 Mar; 190():110143. PubMed ID: 31918254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.