These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2485169)

  • 21. Fate of carbofuran in a model ecosystem.
    Yu CC; Booth GM; Hansen DJ; Larsen JR
    J Agric Food Chem; 1974; 22(3):431-4. PubMed ID: 4840506
    [No Abstract]   [Full Text] [Related]  

  • 22. [Degradation of 14C, 3H, and 36Cl-labelled gamma-hexachlorocyclohexane by anaerobic soil microorganisms (author's transl)].
    Haider K; Jagnow G
    Arch Microbiol; 1975 Jun; 104(2):113-21. PubMed ID: 50827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impacts of lindane usage in the Canadian prairies on the Great Lakes ecosystem. 1. Coupled atmospheric transport model and modeled concentrations in air and soil.
    Ma J; Daggupaty S; Harner T; Li Y
    Environ Sci Technol; 2003 Sep; 37(17):3774-81. PubMed ID: 12967095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of the bound residue composition derived from 14C-labeled chlorsulfuron in soil by using LC-MS and isotope tracing method.
    Ye QF; Wu JM; Sun JH
    J Environ Sci (China); 2004; 16(1):73-8. PubMed ID: 14971456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biotic interactions modify the transfer of cesium-137 in a soil-earthworm-plant-snail food web.
    Fritsch C; Scheifler R; Beaugelin-Seiller K; Hubert P; Coeurdassier M; de Vaufleury A; Badot PM
    Environ Toxicol Chem; 2008 Aug; 27(8):1698-707. PubMed ID: 18266477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of a NAPL on the loss and biodegradation of 14C-phenanthrene residues in two dissimilar soils.
    Swindell AL; Reid BJ
    Chemosphere; 2007 Jan; 66(2):332-9. PubMed ID: 16766015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic and dynamic aspects of soil-plant-snail transfer of cadmium in the field.
    Gimbert F; Mench M; Coeurdassier M; Badot PM; de Vaufleury A
    Environ Pollut; 2008 Apr; 152(3):736-45. PubMed ID: 17693002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of 14C abundance in soil respiration using acclerator mass spectrometry.
    Koarashi J; Iida T; Moriizumi J; Asano T
    J Environ Radioact; 2004; 75(2):117-32. PubMed ID: 15172722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupling of bioaugmentation and biostimulation to improve lindane removal from different soil types.
    Raimondo EE; Saez JM; Aparicio JD; Fuentes MS; Benimeli CS
    Chemosphere; 2020 Jan; 238():124512. PubMed ID: 31430718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experiments on the accumulation of lindane (gamma-BHC) by the primary producers Chlorella spec. and Chlorella pyrenoidosa.
    Hansen PD
    Arch Environ Contam Toxicol; 1979; 8(6):721-31. PubMed ID: 93882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation of pentachlorophenol in soil: the response to physical, chemical, and biological treatments.
    Seech AG; Trevors JT; Bulman TL
    Can J Microbiol; 1991 Jun; 37(6):440-4. PubMed ID: 1913347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transfer of Cd, Cu, Ni, Pb, and Zn in a soil-plant-invertebrate food chain: a microcosm study.
    Scheifler R; de Vaufleury A; Coeurdassier M; Crini N; Badot PM
    Environ Toxicol Chem; 2006 Mar; 25(3):815-22. PubMed ID: 16566167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and characterization of a lindane degrading bacteria Paracoccus sp. NITDBR1 and evaluation of its plant growth promoting traits.
    Sahoo B; Ningthoujam R; Chaudhuri S
    Int Microbiol; 2019 Mar; 22(1):155-167. PubMed ID: 30810939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biodegradation of atrazine in surface soils and subsurface sediments collected from an agricultural research farm.
    Radosevich M; Traina SJ; Tuovinen OH
    Biodegradation; 1996 Apr; 7(2):137-49. PubMed ID: 8882806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of pH on the environmental fate of [14C]aldicarb in an aquatic microcosm.
    Suorsa KE; Fisher SW
    Ecotoxicol Environ Saf; 1986 Feb; 11(1):81-90. PubMed ID: 3956432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Contributions to biological chemistry. XXII. Metabolism and residue retention of lindane-14C in higher plants].
    Itokawa H; Schallah A; Weisgerber I; Klein W; Korte F
    Tetrahedron; 1970 Feb; 26(3):763-73. PubMed ID: 4190988
    [No Abstract]   [Full Text] [Related]  

  • 37. Reductive dechlorination of hexachlorocyclohexane (HCH) isomers in soil under anaerobic conditions.
    Middeldorp PJ; van Doesburg W; Schraa G; Stams AJ
    Biodegradation; 2005 Jun; 16(3):283-90. PubMed ID: 15865152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Test system to establish mass balances for 14C-labeled substances in soil-plant-atmosphere systems under field conditions.
    Schroll R; Kühn S
    Environ Sci Technol; 2004 Mar; 38(5):1537-44. PubMed ID: 15046357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uptake and elimination of lindane by Lymnaea palustris (Mollusca: Gastropoda): a pharmacokinetic approach.
    Thybaud E; Caquet T
    Ecotoxicol Environ Saf; 1991 Jun; 21(3):365-76. PubMed ID: 1714370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Contrastive analysis of environmental factors between Oncomelania hupensis snail marshland and snail natural death marshland in eastern Dongting Lake schistosomiasis endemic areas].
    Zheng SB; Li LH; Zhou YB; Wu JY; Song XX; He Z; Cai B; You JB; Jiang QW
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2014 Apr; 26(2):121-6. PubMed ID: 25051821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.