These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. A review on symptoms, treatments protocols, and proteomic profile in sulfur mustard-exposed victims. Panahi Y; Abdolghaffari AH; Sahebkar A J Cell Biochem; 2018 Jan; 119(1):197-206. PubMed ID: 28657650 [TBL] [Abstract][Full Text] [Related]
43. Immunology of Chronic Obstructive Pulmonary Disease and Sulfur Mustard Induced Airway Injuries: Implications for Immunotherapeutic Interventions. Panahi Y; Jadidi-Niaragh F; Jamalkandi SA; Ghanei M; Pedone C; Nikravanfard N; Nikravesh F; Sahebkar A Curr Pharm Des; 2016; 22(20):2975-96. PubMed ID: 26951100 [TBL] [Abstract][Full Text] [Related]
44. Hypoxia Increases the Potential for Neutrophil-mediated Endothelial Damage in Chronic Obstructive Pulmonary Disease. Lodge KM; Vassallo A; Liu B; Long M; Tong Z; Newby PR; Agha-Jaffar D; Paschalaki K; Green CE; Belchamber KBR; Ridger VC; Stockley RA; Sapey E; Summers C; Cowburn AS; Chilvers ER; Li W; Condliffe AM Am J Respir Crit Care Med; 2022 Apr; 205(8):903-916. PubMed ID: 35044899 [No Abstract] [Full Text] [Related]
45. Proteome analysis of dermal fibroblasts cultured in vitro from human healthy subjects of different ages. Boraldi F; Bini L; Liberatori S; Armini A; Pallini V; Tiozzo R; Pasquali-Ronchetti I; Quaglino D Proteomics; 2003 Jun; 3(6):917-29. PubMed ID: 12833515 [TBL] [Abstract][Full Text] [Related]
46. Characterization of the Protein Components of Matrix Stones Sheds Light on S100-A8 and S100-A9 Relevance in the Inflammatory Pathogenesis of These Rare Renal Calculi. Martelli C; Marzano V; Iavarone F; Huang L; Vincenzoni F; Desiderio C; Messana I; Beltrami P; Zattoni F; Ferraro PM; Buchholz N; Locci G; Faa G; Castagnola M; Gambaro G J Urol; 2016 Sep; 196(3):911-8. PubMed ID: 27113968 [TBL] [Abstract][Full Text] [Related]
47. Activated PMN Exosomes: Pathogenic Entities Causing Matrix Destruction and Disease in the Lung. Genschmer KR; Russell DW; Lal C; Szul T; Bratcher PE; Noerager BD; Abdul Roda M; Xu X; Rezonzew G; Viera L; Dobosh BS; Margaroli C; Abdalla TH; King RW; McNicholas CM; Wells JM; Dransfield MT; Tirouvanziam R; Gaggar A; Blalock JE Cell; 2019 Jan; 176(1-2):113-126.e15. PubMed ID: 30633902 [TBL] [Abstract][Full Text] [Related]
48. Comparative proteomic study reveals the molecular aspects of delayed ocular symptoms induced by sulfur mustard. Pashandi Z; Saraygord-Afshari N; Naderi-Manesh H; Naderi M Int J Proteomics; 2015; 2015():659241. PubMed ID: 25685557 [TBL] [Abstract][Full Text] [Related]
49. Critical COPD respiratory illness is linked to increased transcriptomic activity of neutrophil proteases genes. Almansa R; Socias L; Sanchez-Garcia M; Martín-Loeches I; del Olmo M; Andaluz-Ojeda D; Bobillo F; Rico L; Herrero A; Roig V; San-Jose CA; Rosich S; Barbado J; Disdier C; de Lejarazu RO; Gallegos MC; Fernandez V; Bermejo-Martin JF BMC Res Notes; 2012 Aug; 5():401. PubMed ID: 22852767 [TBL] [Abstract][Full Text] [Related]
50. Interaction of polymorphonuclear leukocytes with cartilage in vitro. Catabolic effects of serine proteases and oxygen radicals. Burkhardt H; Rehkopf E; Kasten M; Rauls S; Heimann P Scand J Rheumatol; 1988; 17(3):183-95. PubMed ID: 3175548 [TBL] [Abstract][Full Text] [Related]
51. Role of Proteases in Chronic Obstructive Pulmonary Disease. Pandey KC; De S; Mishra PK Front Pharmacol; 2017; 8():512. PubMed ID: 28848433 [TBL] [Abstract][Full Text] [Related]
52. SerpinB1 is critical for neutrophil survival through cell-autonomous inhibition of cathepsin G. Baumann M; Pham CT; Benarafa C Blood; 2013 May; 121(19):3900-7, S1-6. PubMed ID: 23532733 [TBL] [Abstract][Full Text] [Related]
53. Neutrophils and the pathogenesis of COPD. Stockley RA Chest; 2002 May; 121(5 Suppl):151S-155S. PubMed ID: 12010844 [No Abstract] [Full Text] [Related]