These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24852259)

  • 1. Acoustic impedance microscopy for biological tissue characterization.
    Kobayashi K; Yoshida S; Saijo Y; Hozumi N
    Ultrasonics; 2014 Sep; 54(7):1922-8. PubMed ID: 24852259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical analysis of ultrasound propagation and reflection intensity for biological acoustic impedance microscope.
    Gunawan AI; Hozumi N; Yoshida S; Saijo Y; Kobayashi K; Yamamoto S
    Ultrasonics; 2015 Aug; 61():79-87. PubMed ID: 25890637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.
    Gunawan AI; Hozumi N; Takahashi K; Yoshida S; Saijo Y; Kobayashi K; Yamamoto S
    Ultrasonics; 2015 Dec; 63():102-10. PubMed ID: 26163739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional acoustic impedance mapping of cultured biological cells.
    Hozumi N; Yoshida S; Kobayashi K
    Ultrasonics; 2019 Nov; 99():105966. PubMed ID: 31394481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study of the acoustical properties of polymers utilized to construct PVDF ultrasonic transducers and the acousto-electric properties of PVDF and P(VDF/TrFE) films.
    Bloomfield PE; Lo WJ; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1397-405. PubMed ID: 18238685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for calibration of bone driver transducers to measure the mastoid impedance.
    Weece R; Allen J
    Hear Res; 2010 May; 263(1-2):216-23. PubMed ID: 20193750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Frequency Acoustic Impedance Imaging of Cancer Cells.
    Fadhel MN; Berndl ES; Strohm EM; Kolios MC
    Ultrasound Med Biol; 2015 Oct; 41(10):2700-13. PubMed ID: 26166459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfabricated 1-3 composite acoustic matching layers for 15 MHz transducers.
    Manh T; Jensen GU; Johansen TF; Hoff L
    Ultrasonics; 2013 Aug; 53(6):1141-9. PubMed ID: 23522684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Input impedance matching of acoustic transducers operating at off-resonant frequencies.
    Son KT; Lee CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2784-94. PubMed ID: 21156374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-frequency analysis for pulse driven ultrasonic microscopy for biological tissue characterization.
    Hozumi N; Yamashita R; Lee CK; Nagao M; Kobayashi K; Saijo Y; Tanaka M; Tanaka N; Ohtsuki S
    Ultrasonics; 2004 Apr; 42(1-9):717-22. PubMed ID: 15047373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic imaging using air-coupled P(VDF/TrFE) transducers at 2 MHz.
    Takahashi S; Ohigashi H
    Ultrasonics; 2009 May; 49(4-5):495-8. PubMed ID: 19215951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution of anisotropic acoustic impedance assessed by time-resolved 50-MHz scanning acoustic microscopy and its relation to porosity in human cortical bone.
    Saïed A; Raum K; Leguerney I; Laugier P
    Bone; 2008 Jul; 43(1):187-194. PubMed ID: 18407822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time and frequency domain deconvolution for cross-sectional cultured cell observation using an acoustic impedance microscope.
    Bagus Prastika E; Shintani T; Kawashima T; Murakami Y; Hozumi N; Tiong Kwong Soon T; Yoshida S; Nagaoka R; Kobayashi K
    Ultrasonics; 2022 Feb; 119():106601. PubMed ID: 34624581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation of acoustic waves from cylindrical polyvinylidene fluoride (PVDF) film confined in a concentric wall.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1653-9. PubMed ID: 18986955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromachining and validation of the scanning acoustic microscope spatial resolution and sensitivity calibration block for 20-230 MHz frequency range.
    Tamulevičius T; Šimatonis L; Ulčinas O; Tamulevičius S; Žukauskas E; Rekuvienė R; Mažeika L
    Microscopy (Oxf); 2016 Oct; 65(5):429-437. PubMed ID: 27489311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of the acoustic impedance profile in a plate using an inverse spectral procedure.
    Kawashima K
    Ultrasonics; 2012 Feb; 52(2):287-93. PubMed ID: 21944992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reflector-based phase calibration of ultrasound transducers.
    van Neer PL; Vos HJ; de Jong N
    Ultrasonics; 2011 Jan; 51(1):1-6. PubMed ID: 20537364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental analysis of 1-3 piezocomposites for high-intensity focused ultrasound transducer applications.
    Chen GS; Liu HC; Lin YC; Lin YL
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):128-34. PubMed ID: 23193224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The acoustic properties of normal and imbedded bovine bone as measured by acoustic microscopy.
    Zimmerman MC; Prabhakar A; Chokshi BV; Budhwani N; Berndt H
    J Biomed Mater Res; 1994 Aug; 28(8):931-8. PubMed ID: 7983091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.