BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 24852550)

  • 1. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. II. Thermal liquids.
    Mirigian S; Schweizer KS
    J Chem Phys; 2014 May; 140(19):194507. PubMed ID: 24852550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. I. General formulation and application to hard sphere fluids.
    Mirigian S; Schweizer KS
    J Chem Phys; 2014 May; 140(19):194506. PubMed ID: 24852549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastically Collective Nonlinear Langevin Equation Theory of Glass-Forming Liquids: Transient Localization, Thermodynamic Mapping, and Cooperativity.
    Phan AD; Schweizer KS
    J Phys Chem B; 2018 Sep; 122(35):8451-8461. PubMed ID: 30091919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts.
    Schweizer KS; Saltzman EJ
    J Chem Phys; 2004 Jul; 121(4):1984-2000. PubMed ID: 15260751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions.
    Zhang R; Schweizer KS
    J Chem Phys; 2015 Oct; 143(14):144906. PubMed ID: 26472397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of activated glassy dynamics in randomly pinned fluids.
    Phan AD; Schweizer KS
    J Chem Phys; 2018 Feb; 148(5):054502. PubMed ID: 29421904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of relaxation and elasticity in polymer glasses.
    Chen K; Schweizer KS
    J Chem Phys; 2007 Jan; 126(1):014904. PubMed ID: 17212516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A collective elastic fluctuation mechanism for decoupling and stretched relaxation in glassy colloidal and molecular liquids.
    Xie SJ; Schweizer KS
    J Chem Phys; 2020 Jan; 152(3):034502. PubMed ID: 31968977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activated hopping and dynamical fluctuation effects in hard sphere suspensions and fluids.
    Saltzman EJ; Schweizer KS
    J Chem Phys; 2006 Jul; 125(4):44509. PubMed ID: 16942158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between the single particle barrier hopping theory and thermodynamic, disordered media, elastic, and jamming models of glassy systems.
    Schweizer KS
    J Chem Phys; 2007 Oct; 127(16):164506. PubMed ID: 17979359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics-Structure-Dynamics Correlations and Nonuniversal Effects in the Elastically Collective Activated Hopping Theory of Glass-Forming Liquids.
    Mei B; Zhou Y; Schweizer KS
    J Phys Chem B; 2020 Jul; 124(28):6121-6131. PubMed ID: 32633526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscopic Theory of Coupled Slow Activated Dynamics in Glass-Forming Binary Mixtures.
    Zhang R; Schweizer KS
    J Phys Chem B; 2018 Apr; 122(13):3465-3479. PubMed ID: 29346732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activated penetrant dynamics in glass forming liquids: size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility.
    Mei B; Schweizer KS
    Soft Matter; 2021 Mar; 17(9):2624-2639. PubMed ID: 33528485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activated dynamics in dense fluids of attractive nonspherical particles. II. Elasticity, barriers, relaxation, fragility, and self-diffusion.
    Tripathy M; Schweizer KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041407. PubMed ID: 21599158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of activated dynamics and glass transition of hard colloids in two dimensions.
    Zhang BK; Li HS; Tian WD; Chen K; Ma YQ
    J Chem Phys; 2014 Mar; 140(9):094506. PubMed ID: 24606367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of shape on the glassy dynamics of hard nonspherical particle fluids. II. Barriers, relaxation, fragility, kinetic vitrification, and universality.
    Tripathy M; Schweizer KS
    J Chem Phys; 2009 Jun; 130(24):244907. PubMed ID: 19566181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activated relaxation in supercooled monodisperse atomic and polymeric WCA fluids: Simulation and ECNLE theory.
    Zhou Y; Mei B; Schweizer KS
    J Chem Phys; 2022 Mar; 156(11):114901. PubMed ID: 35317582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative activated hopping dynamics in binary glass-forming liquids: effects of the size ratio, composition, and interparticle interactions.
    Ma XJ; Zhang R
    Soft Matter; 2023 Jun; 19(25):4746-4771. PubMed ID: 37317997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopically based calculations of the free energy barrier and dynamic length scale in supercooled liquids: the comparative role of configurational entropy and elasticity.
    Rabochiy P; Wolynes PG; Lubchenko V
    J Phys Chem B; 2013 Dec; 117(48):15204-19. PubMed ID: 24195747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of collective elasticity on activated structural relaxation, yielding, and steady state flow in hard sphere fluids and colloidal suspensions under strong deformation.
    Ghosh A; Schweizer KS
    J Chem Phys; 2020 Nov; 153(19):194502. PubMed ID: 33218226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.