These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 24852616)
1. Uncertainty quantification and integration of machine learning techniques for predicting acid rock drainage chemistry: a probability bounds approach. Betrie GD; Sadiq R; Morin KA; Tesfamariam S Sci Total Environ; 2014 Aug; 490():182-90. PubMed ID: 24852616 [TBL] [Abstract][Full Text] [Related]
2. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Park Y; Cho KH; Park J; Cha SM; Kim JH Sci Total Environ; 2015 Jan; 502():31-41. PubMed ID: 25241206 [TBL] [Abstract][Full Text] [Related]
3. Predicting copper concentrations in acid mine drainage: a comparative analysis of five machine learning techniques. Betrie GD; Tesfamariam S; Morin KA; Sadiq R Environ Monit Assess; 2013 May; 185(5):4171-82. PubMed ID: 22983612 [TBL] [Abstract][Full Text] [Related]
4. Prediction of CTL epitopes using QM, SVM and ANN techniques. Bhasin M; Raghava GP Vaccine; 2004 Aug; 22(23-24):3195-204. PubMed ID: 15297074 [TBL] [Abstract][Full Text] [Related]
5. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? Balabin RM; Lomakina EI Phys Chem Chem Phys; 2011 Jun; 13(24):11710-8. PubMed ID: 21594265 [TBL] [Abstract][Full Text] [Related]
6. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. Byvatov E; Fechner U; Sadowski J; Schneider G J Chem Inf Comput Sci; 2003; 43(6):1882-9. PubMed ID: 14632437 [TBL] [Abstract][Full Text] [Related]
7. Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses. Louis B; Agrawal VK; Khadikar PV Eur J Med Chem; 2010 Sep; 45(9):4018-25. PubMed ID: 20584562 [TBL] [Abstract][Full Text] [Related]
8. Forecasting of Landslide Displacement Using a Probability-Scheme Combination Ensemble Prediction Technique. Ma J; Liu X; Niu X; Wang Y; Wen T; Zhang J; Zou Z Int J Environ Res Public Health; 2020 Jul; 17(13):. PubMed ID: 32635227 [TBL] [Abstract][Full Text] [Related]
9. Markerless gating for lung cancer radiotherapy based on machine learning techniques. Lin T; Li R; Tang X; Dy JG; Jiang SB Phys Med Biol; 2009 Mar; 54(6):1555-63. PubMed ID: 19229098 [TBL] [Abstract][Full Text] [Related]
10. Real-time reservoir operation using data mining techniques. Bozorg-Haddad O; Aboutalebi M; Ashofteh PS; LoƔiciga HA Environ Monit Assess; 2018 Sep; 190(10):594. PubMed ID: 30232560 [TBL] [Abstract][Full Text] [Related]
11. Environmental risk assessment of acid rock drainage under uncertainty: The probability bounds and PHREEQC approach. Betrie GD; Sadiq R; Nichol C; Morin KA; Tesfamariam S J Hazard Mater; 2016 Jan; 301():187-96. PubMed ID: 26364267 [TBL] [Abstract][Full Text] [Related]
12. [Quantitative retrieval of chlorophyll a concentration in Taihu Lake using machine learning methods]. Zhang YC; Qian X; Qian Y; Liu JP; Kong FX Huan Jing Ke Xue; 2009 May; 30(5):1321-8. PubMed ID: 19558096 [TBL] [Abstract][Full Text] [Related]
13. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search. Garg A; Raghava GP In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201 [TBL] [Abstract][Full Text] [Related]
14. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions. Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854 [TBL] [Abstract][Full Text] [Related]
15. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Balabin RM; Lomakina EI Analyst; 2011 Apr; 136(8):1703-12. PubMed ID: 21350755 [TBL] [Abstract][Full Text] [Related]
16. [Analysis of infrared spectroscopy of ginsengs by support vector machine and wavelet transform]. Jin XJ; Zhang Y; Xie YF; Cong Q; Zhao B Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):656-60. PubMed ID: 19455793 [TBL] [Abstract][Full Text] [Related]
17. Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods. Natt NK; Kaur H; Raghava GP Proteins; 2004 Jul; 56(1):11-8. PubMed ID: 15162482 [TBL] [Abstract][Full Text] [Related]
18. Application of machine learning techniques in predicting MHC binders. Lata S; Bhasin M; Raghava GP Methods Mol Biol; 2007; 409():201-15. PubMed ID: 18450002 [TBL] [Abstract][Full Text] [Related]
19. Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models. Ke B; Nguyen H; Bui XN; Bui HB; Choi Y; Zhou J; Moayedi H; Costache R; Nguyen-Trang T Chemosphere; 2021 Aug; 276():130204. PubMed ID: 34088091 [TBL] [Abstract][Full Text] [Related]
20. Comparing SVM and ANN based Machine Learning Methods for Species Identification of Food Contaminating Beetles. Bisgin H; Bera T; Ding H; Semey HG; Wu L; Liu Z; Barnes AE; Langley DA; Pava-Ripoll M; Vyas HJ; Tong W; Xu J Sci Rep; 2018 Apr; 8(1):6532. PubMed ID: 29695741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]