BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24852641)

  • 1. Isolation and characterization of ice-binding proteins from higher plants.
    Middleton AJ; Vanderbeld B; Bredow M; Tomalty H; Davies PL; Walker VK
    Methods Mol Biol; 2014; 1166():255-77. PubMed ID: 24852641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and Characterization of Ice-Binding Proteins from Higher Plants.
    Bredow M; Tomalty HE; Graham LA; Gruneberg AK; Middleton AJ; Vanderbeld B; Davies PL; Walker VK
    Methods Mol Biol; 2020; 2156():303-332. PubMed ID: 32607990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and characterization of an antifreeze protein from the perennial rye grass, Lolium perenne.
    Lauersen KJ; Brown A; Middleton A; Davies PL; Walker VK
    Cryobiology; 2011 Jun; 62(3):194-201. PubMed ID: 21457707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.
    Tomalty HE; Walker VK
    Biochem Biophys Res Commun; 2014 Sep; 452(3):636-41. PubMed ID: 25193694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous expression, refolding and functional characterization of two antifreeze proteins from Fragilariopsis cylindrus (Bacillariophyceae).
    Uhlig C; Kabisch J; Palm GJ; Valentin K; Schweder T; Krell A
    Cryobiology; 2011 Dec; 63(3):220-8. PubMed ID: 21884691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Plant Ice-binding Proteins Through Assessment of Ice-recrystallization Inhibition and Isolation Using Ice-affinity Purification.
    Bredow M; Tomalty HE; Walker VK
    J Vis Exp; 2017 May; (123):. PubMed ID: 28518108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a family of ice-active proteins from the Ryegrass, Lolium perenne.
    Kumble KD; Demmer J; Fish S; Hall C; Corrales S; DeAth A; Elton C; Prestidge R; Luxmanan S; Marshall CJ; Wharton DA
    Cryobiology; 2008 Dec; 57(3):263-8. PubMed ID: 18835384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifreeze activity of cold acclimated Japanese radish and purification of antifreeze peptide.
    Kawahara H; Fujii A; Inoue M; Kitao S; Fukuoka J; Obata H
    Cryo Letters; 2009; 30(2):119-31. PubMed ID: 19448861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carrot 'antifreeze' protein has an irregular ice-binding site that confers weak freezing point depression but strong inhibition of ice recrystallization.
    Wang Y; Graham LA; Han Z; Eves R; Gruneberg AK; Campbell RL; Zhang H; Davies PL
    Biochem J; 2020 Jun; 477(12):2179-2192. PubMed ID: 32459306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifreeze proteins enable plants to survive in freezing conditions.
    Gupta R; Deswal R
    J Biosci; 2014 Dec; 39(5):931-44. PubMed ID: 25431421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular recognition and binding of thermal hysteresis proteins to ice.
    Madura JD; Baran K; Wierzbicki A
    J Mol Recognit; 2000; 13(2):101-13. PubMed ID: 10822254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of ice binding proteins from sea ice algae.
    Bayer-Giraldi M; Jin E; Wilson PW
    Methods Mol Biol; 2014; 1166():241-53. PubMed ID: 24852640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis.
    Xiao N; Suzuki K; Nishimiya Y; Kondo H; Miura A; Tsuda S; Hoshino T
    FEBS J; 2010 Jan; 277(2):394-403. PubMed ID: 20030710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significance of conservative asparagine residues in the thermal hysteresis activity of carrot antifreeze protein.
    Zhang DQ; Liu B; Feng DR; He YM; Wang SQ; Wang HB; Wang JF
    Biochem J; 2004 Feb; 377(Pt 3):589-95. PubMed ID: 14531728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice.
    Bayer-Giraldi M; Weikusat I; Besir H; Dieckmann G
    Cryobiology; 2011 Dec; 63(3):210-9. PubMed ID: 21906587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifreeze proteins in overwintering plants: a tale of two activities.
    Griffith M; Yaish MW
    Trends Plant Sci; 2004 Aug; 9(8):399-405. PubMed ID: 15358271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Analysis of a Bacterial Antifreeze Protein Indicates a Cooperative Effect between Its Two Ice-Binding Domains.
    Wang C; Oliver EE; Christner BC; Luo BH
    Biochemistry; 2016 Jul; 55(28):3975-83. PubMed ID: 27359086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Annealing condition influences thermal hysteresis of fungal type ice-binding proteins.
    Xiao N; Hanada Y; Seki H; Kondo H; Tsuda S; Hoshino T
    Cryobiology; 2014 Feb; 68(1):159-61. PubMed ID: 24201106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis.
    Yu SO; Brown A; Middleton AJ; Tomczak MM; Walker VK; Davies PL
    Cryobiology; 2010 Dec; 61(3):327-34. PubMed ID: 20977900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.