These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24852642)

  • 21. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.
    Truong QT; Nguyen QV; Truong VT; Park HC; Byun DY; Goo NS
    Bioinspir Biomim; 2011 Sep; 6(3):036008. PubMed ID: 21865627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The aerodynamics of hovering flight in Drosophila.
    Fry SN; Sayaman R; Dickinson MH
    J Exp Biol; 2005 Jun; 208(Pt 12):2303-18. PubMed ID: 15939772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluid-structure interaction in compliant insect wings.
    Eberle AL; Reinhall PG; Daniel TL
    Bioinspir Biomim; 2014 Jun; 9(2):025005. PubMed ID: 24855064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing.
    Bahlman JW; Swartz SM; Breuer KS
    Bioinspir Biomim; 2014 Jun; 9(2):025008. PubMed ID: 24851830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinematic strategies for mitigating gust perturbations in insects.
    Vance JT; Faruque I; Humbert JS
    Bioinspir Biomim; 2013 Mar; 8(1):016004. PubMed ID: 23302326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wing morphing allows gulls to modulate static pitch stability during gliding.
    Harvey C; Baliga VB; Lavoie P; Altshuler DL
    J R Soc Interface; 2019 Jan; 16(150):20180641. PubMed ID: 30958156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aerodynamic implications of gull's drooped wing-tips.
    Andrews SA; Perez RE; Allan WD
    Bioinspir Biomim; 2013 Dec; 8(4):046003. PubMed ID: 24106263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vortexlet models of flapping flexible wings show tuning for force production and control.
    Mountcastle AM; Daniel TL
    Bioinspir Biomim; 2010 Dec; 5(4):045005. PubMed ID: 21098955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glide performance and aerodynamics of non-equilibrium glides in northern flying squirrels (Glaucomys sabrinus).
    Bahlman JW; Swartz SM; Riskin DK; Breuer KS
    J R Soc Interface; 2013 Mar; 10(80):20120794. PubMed ID: 23256188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the aerodynamic force in an eye-stabilized flapping flyer.
    Su JY; Yang JT
    Bioinspir Biomim; 2013 Dec; 8(4):046010. PubMed ID: 24200672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical prediction of aerodynamic performance for a flying fish during gliding flight.
    Deng J; Zhang L; Liu Z; Mao X
    Bioinspir Biomim; 2019 Jun; 14(4):046009. PubMed ID: 31117061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combined effects of body posture and three-dimensional wing shape enable efficient gliding in flying lizards.
    Khandelwal PC; Hedrick TL
    Sci Rep; 2022 Feb; 12(1):1793. PubMed ID: 35110615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.
    Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC
    Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of posture during gliding flight in the flying lizard
    Buffa V; Salaün W; Cinnella P
    Bioinspir Biomim; 2024 Jan; 19(2):. PubMed ID: 38211353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinematics of turning maneuvers in the southern flying squirrel, Glaucomys volans.
    Bishop KL; Brim-Deforest W
    J Exp Zool A Ecol Genet Physiol; 2008 Jun; 309(5):225-42. PubMed ID: 18409187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design principles for efficient, repeated jumpgliding.
    Desbiens AL; Pope MT; Christensen DL; Hawkes EW; Cutkosky MR
    Bioinspir Biomim; 2014 Jun; 9(2):025009. PubMed ID: 24851908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The significance of moment-of-inertia variation in flight manoeuvres of butterflies.
    Lin T; Zheng L; Hedrick T; Mittal R
    Bioinspir Biomim; 2012 Dec; 7(4):044002. PubMed ID: 23092976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flocking algorithm for autonomous flying robots.
    Virágh C; Vásárhelyi G; Tarcai N; Szörényi T; Somorjai G; Nepusz T; Vicsek T
    Bioinspir Biomim; 2014 Jun; 9(2):025012. PubMed ID: 24852272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust post-stall perching with a simple fixed-wing glider using LQR-Trees.
    Moore J; Cory R; Tedrake R
    Bioinspir Biomim; 2014 Jun; 9(2):025013. PubMed ID: 24852406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.