These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 24853174)

  • 1. Engineering three-dimensionally electrodeposited Si-on-Ni inverse opal structure for high volumetric capacity Li-ion microbattery anode.
    Liu H; Cho HM; Meng YS; Li Q
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9842-9. PubMed ID: 24853174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced electrochemical performance of three-dimensional Ni/Si nanocable arrays as a Li-ion battery anode by nitrogen doping in the Si shell.
    Liu H; Li Q
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12190-6. PubMed ID: 24171433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrodeposited three-dimensional Ni-Si nanocable arrays as high performance anodes for lithium ion batteries.
    Liu H; Hu L; Meng YS; Li Q
    Nanoscale; 2013 Nov; 5(21):10376-83. PubMed ID: 24057142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step electrochemical growth of a three-dimensional Sn-Ni@PEO nanotube array as a high performance lithium-ion battery anode.
    Fan X; Dou P; Jiang A; Ma D; Xu X
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22282-8. PubMed ID: 25423255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries.
    McNulty D; Geaney H; O'Dwyer C
    Sci Rep; 2017 Feb; 7():42263. PubMed ID: 28186183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of multilayer structure on cyclic performance of Si/Fe anode electrode in lithium-ion secondary batteries.
    Kang HK; Lee SR; Cho WI; Won Cho B
    Phys Chem Chem Phys; 2013 Feb; 15(5):1569-77. PubMed ID: 23235690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrodeposited Structurally Stable V2O5 Inverse Opal Networks as High Performance Thin Film Lithium Batteries.
    Armstrong E; McNulty D; Geaney H; O'Dwyer C
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):27006-15. PubMed ID: 26571342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green synthesis and stable li-storage performance of FeSi(2)/Si@C nanocomposite for lithium-ion batteries.
    Chen Y; Qian J; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3753-8. PubMed ID: 22757774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caramel popcorn shaped silicon particle with carbon coating as a high performance anode material for Li-ion batteries.
    He M; Sa Q; Liu G; Wang Y
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11152-8. PubMed ID: 24111737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional Ni/SnOx/C hybrid nanostructured arrays for lithium-ion microbattery anodes with enhanced areal capacity.
    Zhu J; Jiang J; Feng Y; Meng G; Ding H; Huang X
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2634-40. PubMed ID: 23488911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries.
    Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.
    Li H; Wang Y; Na H; Liu H; Zhou H
    J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.
    Liang Z; Zheng G; Li W; Seh ZW; Yao H; Yan K; Kong D; Cui Y
    ACS Nano; 2014 May; 8(5):5249-56. PubMed ID: 24766547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries.
    Zhou M; Cai T; Pu F; Chen H; Wang Z; Zhang H; Guan S
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3449-55. PubMed ID: 23527898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Si/Ge double-layered nanotube array as a lithium ion battery anode.
    Song T; Cheng H; Choi H; Lee JH; Han H; Lee DH; Yoo DS; Kwon MS; Choi JM; Doo SG; Chang H; Xiao J; Huang Y; Park WI; Chung YC; Kim H; Rogers JA; Paik U
    ACS Nano; 2012 Jan; 6(1):303-9. PubMed ID: 22142021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries.
    Kim WS; Hwa Y; Shin JH; Yang M; Sohn HJ; Hong SH
    Nanoscale; 2014 Apr; 6(8):4297-302. PubMed ID: 24615396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries.
    Yao Y; Huo K; Hu L; Liu N; Cha JJ; McDowell MT; Chu PK; Cui Y
    ACS Nano; 2011 Oct; 5(10):8346-51. PubMed ID: 21974912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon inverse opal entrapped with electrode active nanoparticles as high-performance anode for lithium-ion batteries.
    Huang X; Chen J; Lu Z; Yu H; Yan Q; Hng HH
    Sci Rep; 2013; 3():2317. PubMed ID: 23897089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.