These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24853269)

  • 1. Adult age differences in frontostriatal representation of prediction error but not reward outcome.
    Samanez-Larkin GR; Worthy DA; Mata R; McClure SM; Knutson B
    Cogn Affect Behav Neurosci; 2014 Jun; 14(2):672-82. PubMed ID: 24853269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frontostriatal white matter integrity mediates adult age differences in probabilistic reward learning.
    Samanez-Larkin GR; Levens SM; Perry LM; Dougherty RF; Knutson B
    J Neurosci; 2012 Apr; 32(15):5333-7. PubMed ID: 22496578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural and psychological maturation of decision-making in adolescence and young adulthood.
    Christakou A; Gershman SJ; Niv Y; Simmons A; Brammer M; Rubia K
    J Cogn Neurosci; 2013 Nov; 25(11):1807-23. PubMed ID: 23859647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning.
    Haruno M; Kawato M
    Neural Netw; 2006 Oct; 19(8):1242-54. PubMed ID: 16987637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reward prediction error signal enhanced by striatum-amygdala interaction explains the acceleration of probabilistic reward learning by emotion.
    Watanabe N; Sakagami M; Haruno M
    J Neurosci; 2013 Mar; 33(10):4487-93. PubMed ID: 23467364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frontal, Striatal, and Medial Temporal Sensitivity to Value Distinguishes Risk-Taking from Risk-Aversive Older Adults during Decision Making.
    Goh JO; Su YS; Tang YJ; McCarrey AC; Tereshchenko A; Elkins W; Resnick SM
    J Neurosci; 2016 Dec; 36(49):12498-12509. PubMed ID: 27927964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced striatal responses to reward prediction errors in older compared with younger adults.
    Eppinger B; Schuck NW; Nystrom LE; Cohen JD
    J Neurosci; 2013 Jun; 33(24):9905-12. PubMed ID: 23761885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontostriatal response to set switching is moderated by reward sensitivity.
    Avila C; Garbin G; Sanjuán A; Forn C; Barrós-Loscertales A; Bustamante JC; Rodríguez-Pujadas A; Belloch V; Parcet MA
    Soc Cogn Affect Neurosci; 2012 Apr; 7(4):423-30. PubMed ID: 21737433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signals in human striatum are appropriate for policy update rather than value prediction.
    Li J; Daw ND
    J Neurosci; 2011 Apr; 31(14):5504-11. PubMed ID: 21471387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frontostriatal anatomical connections predict age- and difficulty-related differences in reinforcement learning.
    van de Vijver I; Ridderinkhof KR; Harsay H; Reneman L; Cavanagh JF; Buitenweg JI; Cohen MX
    Neurobiol Aging; 2016 Oct; 46():1-12. PubMed ID: 27460144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fronto-striato-cerebellar dysregulation in adolescents with depression during motivated attention.
    Chantiluke K; Halari R; Simic M; Pariante CM; Papadopoulos A; Giampietro V; Rubia K
    Biol Psychiatry; 2012 Jan; 71(1):59-67. PubMed ID: 22015111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elderly adults show higher ventral striatal activation in response to motor performance related rewards than young adults.
    Widmer M; Stulz S; Luft AR; Lutz K
    Neurosci Lett; 2017 Nov; 661():18-22. PubMed ID: 28939388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence.
    Park SQ; Kahnt T; Beck A; Cohen MX; Dolan RJ; Wrase J; Heinz A
    J Neurosci; 2010 Jun; 30(22):7749-53. PubMed ID: 20519550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of aging on frontostriatal reward processing.
    Vink M; Kleerekooper I; van den Wildenberg WP; Kahn RS
    Hum Brain Mapp; 2015 Jun; 36(6):2305-17. PubMed ID: 25704624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontal-striatal circuitry activated by human peak-interval timing in the supra-seconds range.
    Hinton SC; Meck WH
    Brain Res Cogn Brain Res; 2004 Oct; 21(2):171-82. PubMed ID: 15464349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expected value, reward outcome, and temporal difference error representations in a probabilistic decision task.
    Rolls ET; McCabe C; Redoute J
    Cereb Cortex; 2008 Mar; 18(3):652-63. PubMed ID: 17586603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Amygdala Influences on the Fronto-Striatal Brain Mechanisms Involved in Self-Control of Impulsive Desires.
    Krämer B; Gruber O
    Neuropsychobiology; 2015; 72(1):37-45. PubMed ID: 26314945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dorsal striatal-midbrain connectivity in humans predicts how reinforcements are used to guide decisions.
    Kahnt T; Park SQ; Cohen MX; Beck A; Heinz A; Wrase J
    J Cogn Neurosci; 2009 Jul; 21(7):1332-45. PubMed ID: 18752410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making.
    Schönberg T; Daw ND; Joel D; O'Doherty JP
    J Neurosci; 2007 Nov; 27(47):12860-7. PubMed ID: 18032658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Signatures of Prediction Errors in a Decision-Making Task Are Modulated by Action Execution Failures.
    McDougle SD; Butcher PA; Parvin DE; Mushtaq F; Niv Y; Ivry RB; Taylor JA
    Curr Biol; 2019 May; 29(10):1606-1613.e5. PubMed ID: 31056386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.