BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 24853351)

  • 1. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains.
    Lian J; Si T; Nair NU; Zhao H
    Metab Eng; 2014 Jul; 24():139-49. PubMed ID: 24853351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism.
    Krivoruchko A; Serrano-Amatriain C; Chen Y; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1051-6. PubMed ID: 23760499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.
    van Rossum HM; Kozak BU; Pronk JT; van Maris AJA
    Metab Eng; 2016 Jul; 36():99-115. PubMed ID: 27016336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.
    Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ
    mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of Saccharomyces cerevisiae through Lipoylation Machinery Engineering.
    Lian J; Zhao H
    ACS Synth Biol; 2016 Jul; 5(7):689-97. PubMed ID: 26991359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA.
    Schadeweg V; Boles E
    Biotechnol Biofuels; 2016; 9():44. PubMed ID: 26913077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production.
    Gruchattka E; Kayser O
    PLoS One; 2015; 10(12):e0144981. PubMed ID: 26701782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae.
    Rodriguez S; Denby CM; Van Vu T; Baidoo EE; Wang G; Keasling JD
    Microb Cell Fact; 2016 Mar; 15():48. PubMed ID: 26939608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis.
    Kozak BU; van Rossum HM; Benjamin KR; Wu L; Daran JM; Pronk JT; van Maris AJ
    Metab Eng; 2014 Jan; 21():46-59. PubMed ID: 24269999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.
    Song JY; Park JS; Kang CD; Cho HY; Yang D; Lee S; Cho KM
    Metab Eng; 2016 May; 35():38-45. PubMed ID: 26384570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast.
    Nielsen J
    mBio; 2014 Nov; 5(6):e02153. PubMed ID: 25370498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing n-butanol production with
    Schadeweg V; Boles E
    Biotechnol Biofuels; 2016; 9():257. PubMed ID: 27924150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae.
    Tang X; Feng H; Chen WN
    Metab Eng; 2013 Mar; 16():95-102. PubMed ID: 23353549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae.
    Shi S; Si T; Liu Z; Zhang H; Ang EL; Zhao H
    Sci Rep; 2016 May; 6():25675. PubMed ID: 27161023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers.
    Generoso WC; Schadeweg V; Oreb M; Boles E
    Curr Opin Biotechnol; 2015 Jun; 33():1-7. PubMed ID: 25286420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae.
    Zhang Y; Su M; Qin N; Nielsen J; Liu Z
    Microb Cell Fact; 2020 Dec; 19(1):226. PubMed ID: 33302960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of Cardiolipin Leads to Perturbation of Acetyl-CoA Synthesis.
    Raja V; Joshi AS; Li G; Maddipati KR; Greenberg ML
    J Biol Chem; 2017 Jan; 292(3):1092-1102. PubMed ID: 27941023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae.
    Si T; Luo Y; Xiao H; Zhao H
    Metab Eng; 2014 Mar; 22():60-8. PubMed ID: 24412568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced β-Amyrin Synthesis in Saccharomyces cerevisiae by Coupling An Optimal Acetyl-CoA Supply Pathway.
    Liu H; Fan J; Wang C; Li C; Zhou X
    J Agric Food Chem; 2019 Apr; 67(13):3723-3732. PubMed ID: 30808164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.