These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 24853358)
1. Optical properties of developing pip and stone fruit reveal underlying structural changes. Seifert B; Zude M; Spinelli L; Torricelli A Physiol Plant; 2015 Feb; 153(2):327-36. PubMed ID: 24853358 [TBL] [Abstract][Full Text] [Related]
2. Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm. Saeys W; Velazco-Roa MA; Thennadil SN; Ramon H; Nicolaï BM Appl Opt; 2008 Mar; 47(7):908-19. PubMed ID: 18311262 [TBL] [Abstract][Full Text] [Related]
3. Investigation of absorption and scattering characteristics of kiwifruit tissue using a single integrating sphere system. Fang ZH; Fu XP; He XM J Zhejiang Univ Sci B; 2016 Jun; 17(6):484-92. PubMed ID: 27256682 [TBL] [Abstract][Full Text] [Related]
4. Susceptibility of fruit from diverse apple and crabapple germplasm to attack by plum curculio (Coleoptera: Curculionidae). Myers CT; Leskey TC; Forsline PL J Econ Entomol; 2007 Oct; 100(5):1663-71. PubMed ID: 17972646 [TBL] [Abstract][Full Text] [Related]
5. [The Effects of Skin Thickness on Optical Transmission Characteristics in Fruits Tissues]. Shi SN; Tan ZJ; Xie J; Lu J Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1817-23. PubMed ID: 26717732 [TBL] [Abstract][Full Text] [Related]
6. Use of optical absorption and scattering properties to monitor the change of chemical characteristics, particle structure and viscoelasticity during apple puree processing. Yang Y; Bureau S; Wang X; He F; Chen X; Tu K; Pan L; Lan W Food Chem; 2024 Dec; 461():140935. PubMed ID: 39181053 [TBL] [Abstract][Full Text] [Related]
7. Ontogenetic tissue modification in Malus fruit peduncles: the role of sclereids. Horbens M; Feldner A; Höfer M; Neinhuis C Ann Bot; 2014 Jan; 113(1):105-18. PubMed ID: 24287811 [TBL] [Abstract][Full Text] [Related]
8. Modeling pigment contributions to spectral reflection of apple fruit. Merzlyak MN Photochem Photobiol Sci; 2006 Aug; 5(8):748-54. PubMed ID: 16886090 [TBL] [Abstract][Full Text] [Related]
9. Overcoming adverse effects of hailnets on fruit quality and microclimate in an apple orchard. Solomakhin AA; Blanke MM J Sci Food Agric; 2007 Nov; 87(14):2625-37. PubMed ID: 20836171 [TBL] [Abstract][Full Text] [Related]
10. Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: signature analysis, assessment, modelling, and relevance to photoprotection. Merzlyak MN; Melø TB; Naqvi KR J Exp Bot; 2008; 59(2):349-59. PubMed ID: 18256050 [TBL] [Abstract][Full Text] [Related]
11. [Spectral properties of light migration in apple fruit tissue]. Sun TF; Zhang TT; Zheng TT; Cao ZH; Zhang J Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3088-91. PubMed ID: 24555387 [TBL] [Abstract][Full Text] [Related]
12. Apple flavonols during fruit adaptation to solar radiation: spectral features and technique for non-destructive assessment. Merzlyak MN; Solovchenko AE; Smagin AI; Gitelson AA J Plant Physiol; 2005 Feb; 162(2):151-60. PubMed ID: 15779825 [TBL] [Abstract][Full Text] [Related]
13. A sampling approach for predicting the eating quality of apples using visible-near infrared spectroscopy. Martínez Vega MV; Sharifzadeh S; Wulfsohn D; Skov T; Clemmensen LH; Toldam-Andersen TB J Sci Food Agric; 2013 Dec; 93(15):3710-9. PubMed ID: 23633436 [TBL] [Abstract][Full Text] [Related]
14. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging. Qin J; Lu R Appl Spectrosc; 2007 Apr; 61(4):388-96. PubMed ID: 17456257 [TBL] [Abstract][Full Text] [Related]
15. Orchard management under the effects of climate change: implications for apple, plum, and almond growing. Gitea MA; Gitea D; Tit DM; Purza L; Samuel AD; Bungău S; Badea GE; Aleya L Environ Sci Pollut Res Int; 2019 Apr; 26(10):9908-9915. PubMed ID: 30737721 [TBL] [Abstract][Full Text] [Related]
16. Using parabolic mirrors for complete imaging of apple surfaces. Reese D; Lefcourt AM; Kim MS; Martin Lo Y Bioresour Technol; 2009 Oct; 100(19):4499-506. PubMed ID: 19433353 [TBL] [Abstract][Full Text] [Related]
17. Noncontact and Wide-Field Characterization of the Absorption and Scattering Properties of Apple Fruit Using Spatial-Frequency Domain Imaging. Hu D; Fu X; He X; Ying Y Sci Rep; 2016 Dec; 6():37920. PubMed ID: 27910871 [TBL] [Abstract][Full Text] [Related]
18. Spatial and temporal evolution of quantitative magnetic resonance imaging parameters of peach and apple fruit - relationship with biophysical and metabolic traits. Musse M; Bidault K; Quellec S; Brunel B; Collewet G; Cambert M; Bertin N Plant J; 2021 Jan; 105(1):62-78. PubMed ID: 33095963 [TBL] [Abstract][Full Text] [Related]
19. Electronic nose to detect volatile compound profile and quality changes in 'spring Belle' peach (Prunus persica L.) during cold storage in relation to fruit optical properties measured by time-resolved reflectance spectroscopy. Rizzolo A; Bianchi G; Vanoli M; Lurie S; Spinelli L; Torricelli A J Agric Food Chem; 2013 Feb; 61(8):1671-85. PubMed ID: 23020286 [TBL] [Abstract][Full Text] [Related]
20. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Gebhart SC; Lin WC; Mahadevan-Jansen A Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]