BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24853451)

  • 1. Activity classification based on inertial and barometric pressure sensors at different anatomical locations.
    Moncada-Torres A; Leuenberger K; Gonzenbach R; Luft A; Gassert R
    Physiol Meas; 2014 Jul; 35(7):1245-63. PubMed ID: 24853451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suitability of commercial barometric pressure sensors to distinguish sitting and standing activities for wearable monitoring.
    Massé F; Bourke AK; Chardonnens J; Paraschiv-Ionescu A; Aminian K
    Med Eng Phys; 2014 Jun; 36(6):739-44. PubMed ID: 24485500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure.
    Wang J; Redmond SJ; Voleno M; Narayanan MR; Wang N; Cerutti S; Lovell NH
    Physiol Meas; 2012 Nov; 33(11):1811-30. PubMed ID: 23110944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Recognition of Activities of Daily Living Utilizing Insole-Based and Wrist-Worn Wearable Sensors.
    Hegde N; Bries M; Swibas T; Melanson E; Sazonov E; Hegde N; Bries M; Swibas T; Melanson E; Sazonov E
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):979-988. PubMed ID: 28783651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-power sensor module for long-term activity monitoring.
    Leuenberger K; Gassert R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2237-41. PubMed ID: 22254785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body.
    Arif M; Kattan A
    PLoS One; 2015; 10(7):e0130851. PubMed ID: 26203909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SoM: a smart sensor for human activity monitoring and assisted healthy ageing.
    Naranjo-Hernández D; Roa LM; Reina-Tosina J; Estudillo-Valderrama MÁ
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3177-84. PubMed ID: 23086195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of Daily Activities for the Elderly Using Wearable Sensors.
    Liu J; Sohn J; Kim S
    J Healthc Eng; 2017; 2017():8934816. PubMed ID: 29317996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation.
    Lin CW; Yang YT; Wang JS; Yang YC
    IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):991-8. PubMed ID: 22875251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Barometric pressure and triaxial accelerometry-based falls event detection.
    Bianchi F; Redmond SJ; Narayanan MR; Cerutti S; Lovell NH
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):619-27. PubMed ID: 20805056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Child activity recognition based on cooperative fusion model of a triaxial accelerometer and a barometric pressure sensor.
    Nam Y; Park JW
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):420-6. PubMed ID: 24235114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly accurate recognition of human postures and activities through classification with rejection.
    Tang W; Sazonov ES
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):309-15. PubMed ID: 24403429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of physical activity in COPD patients: validation of a robust algorithm for actigraphic measurements in living situations.
    Perriot B; Argod J; Pepin JL; Noury N
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1225-31. PubMed ID: 24058044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Evaluation of State of the Art Systems for Physical Activity Classification of Older Subjects Using Inertial Sensors in a Real Life Scenario: A Benchmark Study.
    Awais M; Palmerini L; Bourke AK; Ihlen EA; Helbostad JL; Chiari L
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring activity patterns using actigraphy in multiple sclerosis.
    Kos D; Nagels G; D'Hooghe MB; Duquet W; Ilsbroukx S; Delbeke S; Kerckhofs E
    Chronobiol Int; 2007; 24(2):345-56. PubMed ID: 17453852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical Human Activity Recognition Using Wearable Sensors.
    Attal F; Mohammed S; Dedabrishvili M; Chamroukhi F; Oukhellou L; Amirat Y
    Sensors (Basel); 2015 Dec; 15(12):31314-38. PubMed ID: 26690450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of a custom physical activity and knee angle measurement sensor system for patients with neuromuscular disorders and gait abnormalities.
    Feldhege F; Mau-Moeller A; Lindner T; Hein A; Markschies A; Zettl UK; Bader R
    Sensors (Basel); 2015 May; 15(5):10734-52. PubMed ID: 25954954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.