These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Donor-σ-Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion. Geng Y; D'Aleo A; Inada K; Cui LS; Kim JU; Nakanotani H; Adachi C Angew Chem Int Ed Engl; 2017 Dec; 56(52):16536-16540. PubMed ID: 29105906 [TBL] [Abstract][Full Text] [Related]
4. Dibenzo[a,j]phenazine-Cored Donor-Acceptor-Donor Compounds as Green-to-Red/NIR Thermally Activated Delayed Fluorescence Organic Light Emitters. Data P; Pander P; Okazaki M; Takeda Y; Minakata S; Monkman AP Angew Chem Int Ed Engl; 2016 May; 55(19):5739-44. PubMed ID: 27060474 [TBL] [Abstract][Full Text] [Related]
5. Theoretical tuning of the singlet-triplet energy gap to achieve efficient long-wavelength thermally activated delayed fluorescence emitters: the impact of substituents. Wang L; Li T; Feng P; Song Y Phys Chem Chem Phys; 2017 Aug; 19(32):21639-21647. PubMed ID: 28766601 [TBL] [Abstract][Full Text] [Related]
6. Influence of the Length of the Donor-Acceptor Bridge on Thermally Activated Delayed Fluorescence. Xue L; Cui B; Xie S; Yin S J Phys Chem Lett; 2019 Jan; 10(2):302-308. PubMed ID: 30614705 [TBL] [Abstract][Full Text] [Related]
8. Structure-Property Correlation in Luminescent Indolo[3,2-b]indole (IDID) Derivatives: Unraveling the Mechanism of High Efficiency Thermally Activated Delayed Fluorescence (TADF). Ryoo CH; Cho I; Han J; Yang JH; Kwon JE; Kim S; Jeong H; Lee C; Park SY ACS Appl Mater Interfaces; 2017 Nov; 9(47):41413-41420. PubMed ID: 29111658 [TBL] [Abstract][Full Text] [Related]
9. Observation of Nonradiative Deactivation Behavior from Singlet and Triplet States of Thermally Activated Delayed Fluorescence Emitters in Solution. Notsuka N; Nakanotani H; Noda H; Goushi K; Adachi C J Phys Chem Lett; 2020 Jan; 11(2):562-566. PubMed ID: 31887042 [TBL] [Abstract][Full Text] [Related]
16. Pyridyl Pyrrolide Boron Complexes: The Facile Generation of Thermally Activated Delayed Fluorescence and Preparation of Organic Light-Emitting Diodes. Shiu YJ; Cheng YC; Tsai WL; Wu CC; Chao CT; Lu CW; Chi Y; Chen YT; Liu SH; Chou PT Angew Chem Int Ed Engl; 2016 Feb; 55(9):3017-21. PubMed ID: 26822378 [TBL] [Abstract][Full Text] [Related]
17. Reliable Prediction with Tuned Range-Separated Functionals of the Singlet-Triplet Gap in Organic Emitters for Thermally Activated Delayed Fluorescence. Sun H; Zhong C; Brédas JL J Chem Theory Comput; 2015 Aug; 11(8):3851-8. PubMed ID: 26574466 [TBL] [Abstract][Full Text] [Related]
18. Ideal Molecular Design of Blue Thermally Activated Delayed Fluorescent Emitter for High Efficiency, Small Singlet-Triplet Energy Splitting, Low Efficiency Roll-Off, and Long Lifetime. Lee DR; Choi JM; Lee CW; Lee JY ACS Appl Mater Interfaces; 2016 Sep; 8(35):23190-6. PubMed ID: 27529181 [TBL] [Abstract][Full Text] [Related]
19. Studies on Annihilation and Coreactant Electrochemiluminescence of Thermally Activated Delayed Fluorescent Molecules in Organic Medium. Huang P; Zou X; Xu Z; Lan Y; Chen L; Zhang B; Niu L Molecules; 2022 Nov; 27(21):. PubMed ID: 36364282 [TBL] [Abstract][Full Text] [Related]
20. Polymer Electrochemiluminescence Featuring Thermally Activated Delayed Fluorescence. Huang P; Zhang B; Hu Q; Zhao B; Zhu Y; Zhang Y; Kong Y; Zeng Z; Bao Y; Wang W; Cheng Y; Niu L Chemphyschem; 2021 Apr; 22(8):726-732. PubMed ID: 33624418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]