These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 24853648)
21. Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model. Kubota M; Shimmura S; Kubota S; Miyashita H; Kato N; Noda K; Ozawa Y; Usui T; Ishida S; Umezawa K; Kurihara T; Tsubota K Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):427-33. PubMed ID: 20847117 [TBL] [Abstract][Full Text] [Related]
22. Upadacitinib inhibits corneal inflammation and neovascularization by suppressing M1 macrophage infiltration in the corneal alkali burn model. Yu J; Shen Y; Luo J; Jin J; Li P; Feng P; Guan H Int Immunopharmacol; 2023 Mar; 116():109680. PubMed ID: 36739832 [TBL] [Abstract][Full Text] [Related]
23. Critical role of TNF-α-induced macrophage VEGF and iNOS production in the experimental corneal neovascularization. Lu P; Li L; Liu G; Baba T; Ishida Y; Nosaka M; Kondo T; Zhang X; Mukaida N Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):3516-26. PubMed ID: 22570350 [TBL] [Abstract][Full Text] [Related]
24. Blockade of the intermediate-conductance Ca(2+)-activated K+ channel inhibits the angiogenesis induced by epidermal growth factor in the treatment of corneal alkali burn. Yang H; Li X; Ma J; Lv X; Zhao S; Lang W; Zhang Y Exp Eye Res; 2013 May; 110():76-87. PubMed ID: 23482085 [TBL] [Abstract][Full Text] [Related]
25. Alkali-induced corneal neovascularization is independent of CXCR2-mediated neutrophil infiltration. Lu P; Li L; Mukaida N; Zhang X Cornea; 2007 Feb; 26(2):199-206. PubMed ID: 17251813 [TBL] [Abstract][Full Text] [Related]
26. Effects of nicotine on corneal wound healing following acute alkali burn. Kim JW; Lim CW; Kim B PLoS One; 2017; 12(6):e0179982. PubMed ID: 28644870 [TBL] [Abstract][Full Text] [Related]
27. Protective roles of the TIR/BB-loop mimetic AS-1 in alkali-induced corneal neovascularization by inhibiting ERK phosphorylation. Liu Y; Shu Y; Yin L; Xie T; Zou J; Zhan P; Wang Y; Wei T; Zhu L; Yang X; Wang W; Cai J; Li Y; Yao Y; Wang X Exp Eye Res; 2021 Jun; 207():108568. PubMed ID: 33839112 [TBL] [Abstract][Full Text] [Related]
28. Inhibitory effects of the platelet-activating factor receptor antagonists, CV-3988 and Ginkgolide B, on alkali burn-induced corneal neovascularization. Lee CM; Jung WK; Na G; Lee DS; Park SG; Seo SK; Yang JW; Yea SS; Lee YM; Park WS; Choi IW Cutan Ocul Toxicol; 2015 Mar; 34(1):53-60. PubMed ID: 24754407 [TBL] [Abstract][Full Text] [Related]
29. AIP1 suppresses neovascularization by inhibiting the NOX4-induced NLRP3/NLRP6 imbalance in a murine corneal alkali burn model. Li Q; Hua X; Li L; Zhou X; Tian Y; Deng Y; Zhang M; Yuan X; Chi W Cell Commun Signal; 2022 May; 20(1):59. PubMed ID: 35524333 [TBL] [Abstract][Full Text] [Related]
30. Alkali burn versus suture-induced corneal neovascularization in C57BL/6 mice: an overview of two common animal models of corneal neovascularization. Giacomini C; Ferrari G; Bignami F; Rama P Exp Eye Res; 2014 Apr; 121():1-4. PubMed ID: 24560796 [TBL] [Abstract][Full Text] [Related]
31. Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1α. Fu YC; Xin ZM Biosci Rep; 2019 Jan; 39(1):. PubMed ID: 30355648 [TBL] [Abstract][Full Text] [Related]
32. Allograft survival enhancement using doxycycline in alkali-burned mouse corneas. Ling S; Li W; Liu L; Zhou H; Wang T; Ye H; Liang L; Yuan J Acta Ophthalmol; 2013 Aug; 91(5):e369-78. PubMed ID: 23387987 [TBL] [Abstract][Full Text] [Related]
33. Comparative study of tacrolimus and bevacizumab on corneal neovascularization in rabbits. Park JH; Joo CK; Chung SK Cornea; 2015 Apr; 34(4):449-55. PubMed ID: 25651492 [TBL] [Abstract][Full Text] [Related]
34. Comparison of genome-wide gene expression in suture- and alkali burn-induced murine corneal neovascularization. Jia C; Zhu W; Ren S; Xi H; Li S; Wang Y Mol Vis; 2011; 17():2386-99. PubMed ID: 21921991 [TBL] [Abstract][Full Text] [Related]
36. Inhibition of experimental choroidal neovascularization in mice by anti-VEGFA/VEGFR2 or non-specific siRNA. Gu L; Chen H; Tuo J; Gao X; Chen L Exp Eye Res; 2010 Sep; 91(3):433-9. PubMed ID: 20599960 [TBL] [Abstract][Full Text] [Related]
37. Critical role of SDF-1α-induced progenitor cell recruitment and macrophage VEGF production in the experimental corneal neovascularization. Liu G; Lu P; Li L; Jin H; He X; Mukaida N; Zhang X Mol Vis; 2011; 17():2129-38. PubMed ID: 21850188 [TBL] [Abstract][Full Text] [Related]
38. Subconjunctival injection of antagomir-21 alleviates corneal neovascularization in a mouse model of alkali-burned cornea. Zhang Y; Zhang T; Ma X; Zou J Oncotarget; 2017 Feb; 8(7):11797-11808. PubMed ID: 28052006 [TBL] [Abstract][Full Text] [Related]
39. Effect of subconjunctival and intraocular bevacizumab injections on corneal neovascularization in a mouse model. Avisar I; Weinberger D; Kremer I Curr Eye Res; 2010 Feb; 35(2):108-15. PubMed ID: 20136420 [TBL] [Abstract][Full Text] [Related]
40. [Efficacy of epigallocatechin gallate in treatment of alkali burn injury of murine cornea]. Wu LQ; Lu M Zhejiang Da Xue Xue Bao Yi Xue Ban; 2015 Jan; 44(1):15-23. PubMed ID: 25851970 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]