BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 24853655)

  • 21. Membrane interactions of antimicrobial peptides from Australian frogs.
    Fernandez DI; Gehman JD; Separovic F
    Biochim Biophys Acta; 2009 Aug; 1788(8):1630-8. PubMed ID: 19013126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilizing zeta potential measurements to study the effective charge, membrane partitioning, and membrane permeation of the lipopeptide surfactin.
    Fan HY; Nazari M; Raval G; Khan Z; Patel H; Heerklotz H
    Biochim Biophys Acta; 2014 Sep; 1838(9):2306-12. PubMed ID: 24631665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.
    Malanovic N; Lohner K
    Biochim Biophys Acta; 2016 May; 1858(5):936-46. PubMed ID: 26577273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions of Antimicrobial Peptides with Bacterial Membranes and Membrane Components.
    Malmsten M
    Curr Top Med Chem; 2016; 16(1):16-24. PubMed ID: 26139113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides.
    Balleza D; Alessandrini A; Beltrán García MJ
    J Membr Biol; 2019 Jun; 252(2-3):131-157. PubMed ID: 31098678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical properties that influence antimicrobial peptide activity in lipid membranes.
    Marín-Medina N; Ramírez DA; Trier S; Leidy C
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10251-10263. PubMed ID: 27837316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics.
    Lohner K; Blondelle SE
    Comb Chem High Throughput Screen; 2005 May; 8(3):241-56. PubMed ID: 15892626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems.
    Lohner K; Prenner EJ
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):141-56. PubMed ID: 10590306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action.
    Chen R; Mark AE
    Eur Biophys J; 2011 Apr; 40(4):545-53. PubMed ID: 21267557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775.
    Joshi S; Bisht GS; Rawat DS; Kumar A; Kumar R; Maiti S; Pasha S
    Biochim Biophys Acta; 2010 Oct; 1798(10):1864-75. PubMed ID: 20599694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Limiting an antimicrobial peptide to the lipid-water interface enhances its bacterial membrane selectivity: a case study of MSI-367.
    Thennarasu S; Huang R; Lee DK; Yang P; Maloy L; Chen Z; Ramamoorthy A
    Biochemistry; 2010 Dec; 49(50):10595-605. PubMed ID: 21062093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Concentration-dependent realignment of the antimicrobial peptide PGLa in lipid membranes observed by solid-state 19F-NMR.
    Glaser RW; Sachse C; Dürr UH; Wadhwani P; Afonin S; Strandberg E; Ulrich AS
    Biophys J; 2005 May; 88(5):3392-7. PubMed ID: 15695635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insight into the antimicrobial mechanism of action of β
    Koivuniemi A; Fallarero A; Bunker A
    Biochim Biophys Acta Biomembr; 2019 Nov; 1861(11):183028. PubMed ID: 31376362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane insertion and bilayer perturbation by antimicrobial peptide CM15.
    Pistolesi S; Pogni R; Feix JB
    Biophys J; 2007 Sep; 93(5):1651-60. PubMed ID: 17496013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absorption and folding of melittin onto lipid bilayer membranes via unbiased atomic detail microsecond molecular dynamics simulation.
    Chen CH; Wiedman G; Khan A; Ulmschneider MB
    Biochim Biophys Acta; 2014 Sep; 1838(9):2243-9. PubMed ID: 24769159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Describing the mechanism of antimicrobial peptide action with the interfacial activity model.
    Wimley WC
    ACS Chem Biol; 2010 Oct; 5(10):905-17. PubMed ID: 20698568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The efficacy of trivalent cyclic hexapeptides to induce lipid clustering in PG/PE membranes correlates with their antimicrobial activity.
    Finger S; Kerth A; Dathe M; Blume A
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2998-3006. PubMed ID: 26367060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of antimicrobial peptides on the formation of nonlamellar lipid mesophases.
    Hickel A; Danner-Pongratz S; Amenitsch H; Degovics G; Rappolt M; Lohner K; Pabst G
    Biochim Biophys Acta; 2008 Oct; 1778(10):2325-33. PubMed ID: 18582435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beyond electrostatics: Antimicrobial peptide selectivity and the influence of cholesterol-mediated fluidity and lipid chain length on protegrin-1 activity.
    Henderson JM; Iyengar NS; Lam KLH; Maldonado E; Suwatthee T; Roy I; Waring AJ; Lee KYC
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182977. PubMed ID: 31077677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.