BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24853985)

  • 1. Probing biased/partial agonism at the G protein-coupled A(2B) adenosine receptor.
    Gao ZG; Balasubramanian R; Kiselev E; Wei Q; Jacobson KA
    Biochem Pharmacol; 2014 Aug; 90(3):297-306. PubMed ID: 24853985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BAY60-6583 acts as a partial agonist at adenosine A2B receptors.
    Hinz S; Lacher SK; Seibt BF; Müller CE
    J Pharmacol Exp Ther; 2014 Jun; 349(3):427-36. PubMed ID: 24633424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the G protein-coupling selectivity of the native A
    Gao ZG; Inoue A; Jacobson KA
    Biochem Pharmacol; 2018 May; 151():201-213. PubMed ID: 29225130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-specific binding and activation of the human adenosine A(2B) receptor.
    Thimm D; Schiedel AC; Sherbiny FF; Hinz S; Hochheiser K; Bertarelli DC; Maass A; Müller CE
    Biochemistry; 2013 Jan; 52(4):726-40. PubMed ID: 23286920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role for the low-affinity A2B adenosine receptor in regulating superoxide generation by murine neutrophils.
    van der Hoeven D; Wan TC; Gizewski ET; Kreckler LM; Maas JE; Van Orman J; Ravid K; Auchampach JA
    J Pharmacol Exp Ther; 2011 Sep; 338(3):1004-12. PubMed ID: 21693629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Both A2a and A2b adenosine receptors at reperfusion are necessary to reduce infarct size in mouse hearts.
    Methner C; Schmidt K; Cohen MV; Downey JM; Krieg T
    Am J Physiol Heart Circ Physiol; 2010 Oct; 299(4):H1262-4. PubMed ID: 20709859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectivity is species-dependent: Characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors.
    Alnouri MW; Jepards S; Casari A; Schiedel AC; Hinz S; Müller CE
    Purinergic Signal; 2015 Sep; 11(3):389-407. PubMed ID: 26126429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine augments IL-10 production by microglial cells through an A2B adenosine receptor-mediated process.
    Koscsó B; Csóka B; Selmeczy Z; Himer L; Pacher P; Virág L; Haskó G
    J Immunol; 2012 Jan; 188(1):445-53. PubMed ID: 22116830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The G(s)-coupled adenosine A(2B) receptor recruits divergent pathways to regulate ERK1/2 and p38.
    Schulte G; Fredholm BB
    Exp Cell Res; 2003 Oct; 290(1):168-76. PubMed ID: 14516797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the A2B adenosine receptor from mouse, rabbit, and dog.
    Auchampach JA; Kreckler LM; Wan TC; Maas JE; van der Hoeven D; Gizewski E; Narayanan J; Maas GE
    J Pharmacol Exp Ther; 2009 Apr; 329(1):2-13. PubMed ID: 19141710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arrestin isoforms dictate differential kinetics of A2B adenosine receptor trafficking.
    Mundell SJ; Matharu AL; Kelly E; Benovic JL
    Biochemistry; 2000 Oct; 39(42):12828-36. PubMed ID: 11041847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of mechanical forces and adenosine in the regulation of intestinal enterochromaffin cell serotonin secretion.
    Chin A; Svejda B; Gustafsson BI; Granlund AB; Sandvik AK; Timberlake A; Sumpio B; Pfragner R; Modlin IM; Kidd M
    Am J Physiol Gastrointest Liver Physiol; 2012 Feb; 302(3):G397-405. PubMed ID: 22038827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capadenoson, a clinically trialed partial adenosine A
    Baltos JA; Vecchio EA; Harris MA; Qin CX; Ritchie RH; Christopoulos A; White PJ; May LT
    Biochem Pharmacol; 2017 Jul; 135():79-89. PubMed ID: 28344125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic AMP-dependent, protein kinase A-independent activation of extracellular signal-regulated kinase 1/2 following adenosine receptor stimulation in human umbilical vein endothelial cells: role of exchange protein activated by cAMP 1 (Epac1).
    Fang Y; Olah ME
    J Pharmacol Exp Ther; 2007 Sep; 322(3):1189-200. PubMed ID: 17565009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of G protein-biased agonists that fail to recruit β-arrestin or promote internalization of the D1 dopamine receptor.
    Conroy JL; Free RB; Sibley DR
    ACS Chem Neurosci; 2015 Apr; 6(4):681-92. PubMed ID: 25660762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of adenosine A(2A) receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NFκB nuclear translocation.
    Mediero A; Perez-Aso M; Cronstein BN
    Br J Pharmacol; 2013 Jul; 169(6):1372-88. PubMed ID: 23647065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionally biased modulation of A(3) adenosine receptor agonist efficacy and potency by imidazoquinolinamine allosteric enhancers.
    Gao ZG; Verzijl D; Zweemer A; Ye K; Göblyös A; Ijzerman AP; Jacobson KA
    Biochem Pharmacol; 2011 Sep; 82(6):658-68. PubMed ID: 21718691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-Arrestin Recruitment and Biased Agonism at Free Fatty Acid Receptor 1.
    Mancini AD; Bertrand G; Vivot K; Carpentier É; Tremblay C; Ghislain J; Bouvier M; Poitout V
    J Biol Chem; 2015 Aug; 290(34):21131-21140. PubMed ID: 26157145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translocation of arrestin induced by human A(3) adenosine receptor ligands in an engineered cell line: comparison with G protein-dependent pathways.
    Gao ZG; Jacobson KA
    Pharmacol Res; 2008 Apr; 57(4):303-11. PubMed ID: 18424164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of functional selectivity through G protein-dependent and -independent signaling pathways at the adrenergic α(2C) receptor.
    Kurko D; Kapui Z; Nagy J; Lendvai B; Kolok S
    Brain Res Bull; 2014 Aug; 107():89-101. PubMed ID: 25080296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.