These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 24854054)

  • 1. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.
    Yu H; Yue Q; Zhou J; Wang W
    Sensors (Basel); 2014 May; 14(5):8740-55. PubMed ID: 24854054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.
    Yu H; Zhou J; Deng L; Wen Z
    Sensors (Basel); 2014 Feb; 14(2):3323-41. PubMed ID: 24556670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester.
    Zhang W; Dong Y; Tan Y; Zhang M; Qian X; Wang X
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Piezoelectric and Electromagnetic Broadband Harvester with Double Cantilever Beams.
    Jiang B; Zhu F; Yang Y; Zhu J; Yang Y; Yuan M
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of a Novel Tunable Piezoelectric Vibration Energy Harvester.
    Raghavan S; Gupta R; Sharma L
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal Multienergy Harvester Architecture.
    Sriramdas R; Yang D; Kang MG; Sanghadasa M; Priya S
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):324-331. PubMed ID: 33372751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Development of a 2 × 2 Array Piezoelectric-Electromagnetic Hybrid Energy Harvester.
    Han B; Zhang S; Liu J; Jiang Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency enhancement of a cantilever-based vibration energy harvester.
    Kubba AE; Jiang K
    Sensors (Basel); 2013 Dec; 14(1):188-211. PubMed ID: 24366177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration.
    Tsukamoto T; Umino Y; Shiomi S; Yamada K; Suzuki T
    Sci Technol Adv Mater; 2018; 19(1):660-668. PubMed ID: 30275914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester.
    Ma T; Sun K; Jia S; Du F; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation.
    Lee YJ; Qi Y; Zhou G; Lua KB
    Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration.
    Duque M; Leon-Salguero E; Sacristán J; Esteve J; Murillo G
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Self-Powered Engine Health Monitoring System Based on L-Shaped Wideband Piezoelectric Energy Harvester.
    Shi S; Yue Q; Zhang Z; Yuan J; Zhou J; Zhang X; Lu S; Luo X; Shi C; Yu H
    Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30487394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical and Experimental Studies on MEMS Variable Cross-Section Cantilever Beam Based Piezoelectric Vibration Energy Harvester.
    He X; Li D; Zhou H; Hui X; Mu X
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34208991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband Zero-Power Wakeup MEMS Device for Energy-Efficient Sensor Nodes.
    Ahmed M; Dankwort T; Grünzig S; Lange V; Gojdka B
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piezoelectric Performance of a Symmetrical Ring-Shaped Piezoelectric Energy Harvester Using PZT-5H under a Temperature Gradient.
    Zhou N; Li R; Ao H; Zhang C; Jiang H
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32610622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body.
    Li X; Bi C; Li Z; Liu B; Wang T; Zhang S
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester.
    Chun I; Lee HW; Kwon KH
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9253-7. PubMed ID: 25971046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.