These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24854054)

  • 21. Design and optimisation of magnetically-tunable hybrid piezoelectric-triboelectric energy harvester.
    Ganapathy SR; Salleh H; Azhar MKA
    Sci Rep; 2021 Feb; 11(1):4458. PubMed ID: 33627722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and Test of a Spoke-like Piezoelectric Energy Harvester.
    Gao S; Cao Q; Zhou N; Ao H; Jiang H
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and fabrication of vibration based energy harvester using microelectromechanical system piezoelectric cantilever for low power applications.
    Kim M; Lee SK; Yang YS; Jeong J; Min NK; Kwon KH
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7932-7. PubMed ID: 24266167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and Characterization of the Li-Doped ZnO Thin Films Piezoelectric Energy Harvester with Multi-Resonant Frequencies.
    Zhao X; Li S; Ai C; Liu H; Wen D
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30917569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vibration Energy Conversion Power Supply Based on the Piezoelectric Thin Film Planar Array.
    Wang B; Lan D; Zeng F; Li W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Tuning Fork Frequency Up-Conversion Energy Harvester.
    Wu Q; Gao S; Jin L; Zhang X; Yin Z; Wang C
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of enhanced piezoelectric energy harvester induced by human motion.
    Minami Y; Nakamachi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1627-30. PubMed ID: 23366218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and experimental evaluation on an advanced multisource energy harvesting system for wireless sensor nodes.
    Li H; Zhang G; Ma R; You Z
    ScientificWorldJournal; 2014; 2014():671280. PubMed ID: 25032233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency Modulation Approach for High Power Density 100 Hz Piezoelectric Vibration Energy Harvester.
    Ju D; Wang L; Li C; Huang H; Liu H; Liu K; Wang Q; Han X; Zhao L; Maeda R
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique.
    Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Power Density Improvement of Piezoelectric Energy Harvesters via a Novel Hybridization Scheme with Electromagnetic Transduction.
    Li Z; Xin C; Peng Y; Wang M; Luo J; Xie S; Pu H
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Vibration Energy Harvester and Power Management Solution for Battery-Free Operation of Wireless Sensor Nodes.
    Rodriguez JC; Nico V; Punch J
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester.
    Aranda JJ; Bader S; Oelmann B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfabrication and integration of a sol-gel PZT folded spring energy harvester.
    Lueke J; Badr A; Lou E; Moussa WA
    Sensors (Basel); 2015 May; 15(6):12218-41. PubMed ID: 26016911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subcutaneous Solar Energy Harvesting for Self-Powered Wireless Implantable Sensor Systems.
    Wu T; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4657-4660. PubMed ID: 30441389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling and Efficiency Analysis of a Piezoelectric Energy Harvester Based on the Flow Induced Vibration of a Piezoelectric Composite Pipe.
    Zhou M; Al-Furjan MSH; Wang B
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Low-Frequency MEMS Piezoelectric Energy Harvesting System Based on Frequency Up-Conversion Mechanism.
    Huang M; Hou C; Li Y; Liu H; Wang F; Chen T; Yang Z; Tang G; Sun L
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31554221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible wearable sensor nodes with solar energy harvesting.
    Taiyang Wu ; Arefin MS; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3273-3276. PubMed ID: 29060596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Working characteristics of a magnetostrictive vibration energy harvester for rotating car wheels.
    Liu H; Dong W; Chang Y; Gao Y; Li W
    Rev Sci Instrum; 2022 May; 93(5):055001. PubMed ID: 35649761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.