BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24854085)

  • 1. Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot.
    Zhu Y; Zhu LN; Guo R; Cui HJ; Ye S; Fang Q
    Sci Rep; 2014 May; 4():5046. PubMed ID: 24854085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniaturization of the Whole Process of Protein Crystallographic Analysis by a Microfluidic Droplet Robot: From Nanoliter-Scale Purified Proteins to Diffraction-Quality Crystals.
    Wang JW; Gao J; Wang HF; Jin QH; Rao B; Deng W; Cao Y; Lei M; Ye S; Fang Q
    Anal Chem; 2019 Aug; 91(15):10132-10140. PubMed ID: 31276402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins.
    Li L; Mustafi D; Fu Q; Tereshko V; Chen DL; Tice JD; Ismagilov RF
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19243-8. PubMed ID: 17159147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination.
    Hansen CL; Classen S; Berger JM; Quake SR
    J Am Chem Soc; 2006 Mar; 128(10):3142-3. PubMed ID: 16522084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential operation droplet array: an automated microfluidic platform for picoliter-scale liquid handling, analysis, and screening.
    Zhu Y; Zhang YX; Cai LF; Fang Q
    Anal Chem; 2013 Jul; 85(14):6723-31. PubMed ID: 23763273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. User-loaded SlipChip for equipment-free multiplexed nanoliter-scale experiments.
    Li L; Du W; Ismagilov R
    J Am Chem Soc; 2010 Jan; 132(1):106-11. PubMed ID: 20000708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode.
    Liang YR; Zhu LN; Gao J; Zhao HX; Zhu Y; Ye S; Fang Q
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11837-11845. PubMed ID: 28306245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets.
    Zheng B; Roach LS; Ismagilov RF
    J Am Chem Soc; 2003 Sep; 125(37):11170-1. PubMed ID: 16220918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Approaches for Protein Crystal Structure Analysis.
    Maeki M; Yamaguchi H; Tokeshi M; Miyazaki M
    Anal Sci; 2016; 32(1):3-9. PubMed ID: 26753699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases.
    Li D; Boland C; Walsh K; Caffrey M
    J Vis Exp; 2012 Sep; (67):e4000. PubMed ID: 22971907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoliter-Scale Droplet-Droplet Microfluidic Microextraction Coupled with MALDI-TOF Mass Spectrometry for Metabolite Analysis of Cell Droplets.
    Sun WH; Wei Y; Guo XL; Wu Q; Di X; Fang Q
    Anal Chem; 2020 Jul; 92(13):8759-8767. PubMed ID: 32496763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoliter Quantitative High-Throughput Screening with Large-Scale Tunable Gradients Based on a Microfluidic Droplet Robot under Unilateral Dispersion Mode.
    Wei Y; Zhu Y; Fang Q
    Anal Chem; 2019 Apr; 91(8):4995-5003. PubMed ID: 30813716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automated, fully-integrated nucleic acid analyzer based on microfluidic liquid handling robot technique.
    Lin TT; Wang JW; Shi QN; Wang HF; Pan JZ; Fang Q
    Anal Chim Acta; 2023 Jan; 1239():340698. PubMed ID: 36628766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated high-throughput nanoliter-scale protein crystallization screening.
    Li F; Robinson H; Yeung ES
    Anal Bioanal Chem; 2005 Dec; 383(7-8):1034-41. PubMed ID: 16283260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip.
    Li L; Ismagilov RF
    Annu Rev Biophys; 2010; 39():139-58. PubMed ID: 20192773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple host-guest chemistry to modulate the process of concentration and crystallization of membrane proteins by detergent capture in a microfluidic device.
    Li L; Nachtergaele S; Seddon AM; Tereshko V; Ponomarenko N; Ismagilov RF
    J Am Chem Soc; 2008 Oct; 130(43):14324-8. PubMed ID: 18831551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical detection techniques for droplet microfluidics--a review.
    Zhu Y; Fang Q
    Anal Chim Acta; 2013 Jul; 787():24-35. PubMed ID: 23830418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases.
    Cherezov V; Peddi A; Muthusubramaniam L; Zheng YF; Caffrey M
    Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1795-807. PubMed ID: 15388926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compact disk-like centrifugal microfluidic system for high-throughput nanoliter-scale protein crystallization screening.
    Li G; Chen Q; Li J; Hu X; Zhao J
    Anal Chem; 2010 Jun; 82(11):4362-9. PubMed ID: 20459060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Protein Crystallization in an Integrated Droplet-Based Microfluidic Platform.
    Ferreira J; Castro F
    Methods Mol Biol; 2023; 2652():347-359. PubMed ID: 37093486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.