These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 24854188)

  • 1. Low-cost mobile phone microscopy with a reversed mobile phone camera lens.
    Switz NA; D'Ambrosio MV; Fletcher DA
    PLoS One; 2014; 9(5):e95330. PubMed ID: 24854188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low cost mobile phone dark-field microscope for nanoparticle-based quantitative studies.
    Sun D; Hu TY
    Biosens Bioelectron; 2018 Jan; 99():513-518. PubMed ID: 28823976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cost-effective and compact wide-field fluorescent imaging on a cell-phone.
    Zhu H; Yaglidere O; Su TW; Tseng D; Ozcan A
    Lab Chip; 2011 Jan; 11(2):315-22. PubMed ID: 21063582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative imaging with a mobile phone microscope.
    Skandarajah A; Reber CD; Switz NA; Fletcher DA
    PLoS One; 2014; 9(5):e96906. PubMed ID: 24824072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobile phone microscopy for the diagnosis of soil-transmitted helminth infections: a proof-of-concept study.
    Bogoch II; Andrews JR; Speich B; Utzinger J; Ame SM; Ali SM; Keiser J
    Am J Trop Med Hyg; 2013 Apr; 88(4):626-9. PubMed ID: 23478580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging systems and algorithms to analyze biological samples in real-time using mobile phone microscopy.
    Shanmugam A; Usmani M; Mayberry A; Perkins DL; Holcomb DE
    PLoS One; 2018; 13(3):e0193797. PubMed ID: 29509786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-phone-based platform for biomedical device development and education applications.
    Smith ZJ; Chu K; Espenson AR; Rahimzadeh M; Gryshuk A; Molinaro M; Dwyre DM; Lane S; Matthews D; Wachsmann-Hogiu S
    PLoS One; 2011 Mar; 6(3):e17150. PubMed ID: 21399693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of portable microscopic devices for the diagnosis of Schistosoma and soil-transmitted helminth infection.
    Bogoch II; Coulibaly JT; Andrews JR; Speich B; Keiser J; Stothard JR; N'goran EK; Utzinger J
    Parasitology; 2014 Dec; 141(14):1811-8. PubMed ID: 24776232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point-of-care mobile digital microscopy and deep learning for the detection of soil-transmitted helminths and Schistosoma haematobium.
    Holmström O; Linder N; Ngasala B; Mårtensson A; Linder E; Lundin M; Moilanen H; Suutala A; Diwan V; Lundin J
    Glob Health Action; 2017 Jun; 10(sup3):1337325. PubMed ID: 28838305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging & identification of malaria parasites using cellphone microscope with a ball lens.
    Agbana TE; Diehl JC; van Pul F; Khan SM; Patlan V; Verhaegen M; Vdovin G
    PLoS One; 2018; 13(10):e0205020. PubMed ID: 30286150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobile phone based clinical microscopy for global health applications.
    Breslauer DN; Maamari RN; Switz NA; Lam WA; Fletcher DA
    PLoS One; 2009 Jul; 4(7):e6320. PubMed ID: 19623251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-performance cell-phone based polarized microscope for malaria diagnosis.
    Yu Z; Li Y; Deng L; Luo B; Wu P; Geng D
    J Biophotonics; 2023 May; 16(5):e202200290. PubMed ID: 36541739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction.
    Zhang Y; Wu Y; Zhang Y; Ozcan A
    Sci Rep; 2016 Jun; 6():27811. PubMed ID: 27283459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobile phone-based UV fluorescence microscopy for the identification of fungal pathogens.
    Goenka C; Lewis W; Chevres-Fernández LR; Ortega-Martínez A; Ibarra-Silva E; Williams M; Franco W
    Lasers Surg Med; 2019 Feb; 51(2):201-207. PubMed ID: 30113081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.
    Zhu H; Ozcan A
    Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of Image Quality and Diagnostic Accuracy Using a Mobile Phone Camera Microscope Adaptor Compared With Glass Slide Review in Teledermatopathology.
    Laggis CW; Bailey EE; Novoa R; Stewart CL; Stoff B; Wanat KA; Barbieri J; Kovarik C
    Am J Dermatopathol; 2020 May; 42(5):349-353. PubMed ID: 31633596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobile Phone Ratiometric Imaging Enables Highly Sensitive Fluorescence Lateral Flow Immunoassays without External Optical Filters.
    Shah KG; Singh V; Kauffman PC; Abe K; Yager P
    Anal Chem; 2018 Jun; 90(11):6967-6974. PubMed ID: 29715012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open Source 3D-printed focussing mechanism for cellphone-based cellular microscopy.
    Jawale YK; Rapol U; Athale CA
    J Microsc; 2019 Feb; 273(2):105-114. PubMed ID: 30417401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobile Phone Devices and Handheld Microscopes as Diagnostic Platforms for Malaria and Neglected Tropical Diseases (NTDs) in Low-Resource Settings: A Systematic Review, Historical Perspective and Future Outlook.
    Vasiman A; Stothard JR; Bogoch II
    Adv Parasitol; 2019; 103():151-173. PubMed ID: 30878057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.