These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24854241)

  • 1. Effect of morphology of nanoscale hydrated channels on proton conductivity in block copolymer electrolyte membranes.
    Chen XC; Wong DT; Yakovlev S; Beers KM; Downing KH; Balsara NP
    Nano Lett; 2014 Jul; 14(7):4058-64. PubMed ID: 24854241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of Schroeder's paradox in a nanostructured block copolymer electrolyte membrane.
    Beers KM; Yakovlev S; Jackson A; Wang X; Hexemer A; Downing KH; Balsara NP
    J Phys Chem B; 2014 Jun; 118(24):6785-91. PubMed ID: 24842682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Swelling of individual nanodomains in hydrated block copolymer electrolyte membranes.
    Chen XC; Jiang X; Balsara NP
    J Chem Phys; 2018 Oct; 149(16):163325. PubMed ID: 30384742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation.
    Park MJ; Downing KH; Jackson A; Gomez ED; Minor AM; Cookson D; Weber AZ; Balsara NP
    Nano Lett; 2007 Nov; 7(11):3547-52. PubMed ID: 17960948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanometer-scale water- and proton-diffusion heterogeneities across water channels in polymer electrolyte membranes.
    Song J; Han OH; Han S
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3615-20. PubMed ID: 25630609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions.
    Kim SY; Kim S; Park MJ
    Nat Commun; 2010 Oct; 1():88. PubMed ID: 20981017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells.
    Xu F; Mu S
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1169-80. PubMed ID: 24749420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane.
    Liew JWY; Loh KS; Ahmad A; Lim KL; Wan Daud WR
    PLoS One; 2017; 12(9):e0185313. PubMed ID: 28957374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically and structurally robust sulfonated block copolymer membranes for water purification applications.
    Yeo J; Kim SY; Kim S; Ryu DY; Kim TH; Park MJ
    Nanotechnology; 2012 Jun; 23(24):245703. PubMed ID: 22641347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of polystyrene-poly(arylene ether sulfone)-polystyrene triblock copolymer for proton exchange membrane applications.
    Yang JE; Hong YT; Lee JS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3594-8. PubMed ID: 17252818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ABC triblock copolymer vesicles with mesh-like morphology.
    Zhao W; Chen D; Hu Y; Grason GM; Russell TP
    ACS Nano; 2011 Jan; 5(1):486-92. PubMed ID: 21128679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of integral asymmetric membranes of AB diblock and ABC triblock copolymers by phase inversion.
    Jung A; Filiz V; Rangou S; Buhr K; Merten P; Hahn J; Clodt J; Abetz C; Abetz V
    Macromol Rapid Commun; 2013 Apr; 34(7):610-5. PubMed ID: 23401072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous equilibrated growth of ordered block copolymer thin films by electrospray deposition.
    Hu H; Rangou S; Kim M; Gopalan P; Filiz V; Avgeropoulos A; Osuji CO
    ACS Nano; 2013 Apr; 7(4):2960-70. PubMed ID: 23451911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and Proton Transport in Humidified Phosphonated Peptoid Block Copolymers.
    Sun J; Jiang X; Siegmund A; Connolly MD; Downing KH; Balsara NP; Zuckermann RN
    Macromolecules; 2016 Apr; 49(8):3083-3090. PubMed ID: 27134312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of sarin with polyelectrolyte membranes: a molecular dynamics simulation study.
    Lee MT; Vishnyakov A; Gor GY; Neimark AV
    J Phys Chem B; 2013 Jan; 117(1):365-72. PubMed ID: 23205740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anhydrous proton-conducting polymeric electrolytes for fuel cells.
    Narayanan SR; Yen SP; Liu L; Greenbaum SG
    J Phys Chem B; 2006 Mar; 110(9):3942-8. PubMed ID: 16509680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs).
    Ebrahimi M; Kujawski W; Fatyeyeva K; Kujawa J
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Block Copolymer Membranes for Efficient Capture of a Chemotherapy Drug.
    Chen XC; Oh HJ; Yu JF; Yang JK; Petzetakis N; Patel AS; Hetts SW; Balsara NP
    ACS Macro Lett; 2016 Aug; 5(8):936-941. PubMed ID: 27547493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology evolution in a diblock copolymer film.
    Song L; Lam YM
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3904-9. PubMed ID: 17256350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers.
    Kim YS; Pivovar BS
    Annu Rev Chem Biomol Eng; 2010; 1():123-48. PubMed ID: 22432576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.