These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The rise and fall of Light-Harvesting Complex Stress-Related proteins as photoprotection agents during evolution. Pinnola A J Exp Bot; 2019 Oct; 70(20):5527-5535. PubMed ID: 31424076 [TBL] [Abstract][Full Text] [Related]
3. Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation. Quaas T; Berteotti S; Ballottari M; Flieger K; Bassi R; Wilhelm C; Goss R J Plant Physiol; 2015 Jan; 172():92-103. PubMed ID: 25240793 [TBL] [Abstract][Full Text] [Related]
4. Evolution of photoprotection mechanisms upon land colonization: evidence of PSBS-dependent NPQ in late Streptophyte algae. Gerotto C; Morosinotto T Physiol Plant; 2013 Dec; 149(4):583-98. PubMed ID: 23663155 [TBL] [Abstract][Full Text] [Related]
5. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Johnson MP; Ruban AV Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315 [TBL] [Abstract][Full Text] [Related]
6. Heterologous expression of moss light-harvesting complex stress-related 1 (LHCSR1), the chlorophyll a-xanthophyll pigment-protein complex catalyzing non-photochemical quenching, in Nicotiana sp. Pinnola A; Ghin L; Gecchele E; Merlin M; Alboresi A; Avesani L; Pezzotti M; Capaldi S; Cazzaniga S; Bassi R J Biol Chem; 2015 Oct; 290(40):24340-54. PubMed ID: 26260788 [TBL] [Abstract][Full Text] [Related]
7. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum. Giovagnetti V; Ruban AV Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819 [TBL] [Abstract][Full Text] [Related]
8. The evolution of the photoprotective antenna proteins in oxygenic photosynthetic eukaryotes. Giovagnetti V; Ruban AV Biochem Soc Trans; 2018 Oct; 46(5):1263-1277. PubMed ID: 30154089 [TBL] [Abstract][Full Text] [Related]
9. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Sacharz J; Giovagnetti V; Ungerer P; Mastroianni G; Ruban AV Nat Plants; 2017 Jan; 3():16225. PubMed ID: 28134919 [TBL] [Abstract][Full Text] [Related]
10. Coexistence of plant and algal energy dissipation mechanisms in the moss Physcomitrella patens. Gerotto C; Alboresi A; Giacometti GM; Bassi R; Morosinotto T New Phytol; 2012 Nov; 196(3):763-773. PubMed ID: 23005032 [TBL] [Abstract][Full Text] [Related]
11. The importance of a highly active and DeltapH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. Goss R; Ann Pinto E; Wilhelm C; Richter M J Plant Physiol; 2006 Oct; 163(10):1008-21. PubMed ID: 16971213 [TBL] [Abstract][Full Text] [Related]
12. Dynamic Changes between Two LHCX-Related Energy Quenching Sites Control Diatom Photoacclimation. Taddei L; Chukhutsina VU; Lepetit B; Stella GR; Bassi R; van Amerongen H; Bouly JP; Jaubert M; Finazzi G; Falciatore A Plant Physiol; 2018 Jul; 177(3):953-965. PubMed ID: 29773581 [TBL] [Abstract][Full Text] [Related]
13. Photoprotection in the green tidal alga Ulva prolifera: role of LHCSR and PsbS proteins in response to high light stress. Mou S; Zhang X; Dong M; Fan X; Xu J; Cao S; Xu D; Wang W; Ye N Plant Biol (Stuttg); 2013 Nov; 15(6):1033-9. PubMed ID: 23865617 [TBL] [Abstract][Full Text] [Related]
14. Functional analysis of LHCSR1, a protein catalyzing NPQ in mosses, by heterologous expression in Arabidopsis thaliana. Dikaios I; Schiphorst C; Dall'Osto L; Alboresi A; Bassi R; Pinnola A Photosynth Res; 2019 Dec; 142(3):249-264. PubMed ID: 31270669 [TBL] [Abstract][Full Text] [Related]
15. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching. Roach T; Miller R; Aigner S; Kranner I Ann Bot; 2015 Sep; 116(4):519-27. PubMed ID: 25878139 [TBL] [Abstract][Full Text] [Related]
16. Rapid regulation of excitation energy in two pennate diatoms from contrasting light climates. Derks AK; Bruce D Photosynth Res; 2018 Nov; 138(2):149-165. PubMed ID: 30008155 [TBL] [Abstract][Full Text] [Related]
17. Non-photochemical quenching in cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae. Kaňa R; Kotabová E; Sobotka R; Prášil O PLoS One; 2012; 7(1):e29700. PubMed ID: 22235327 [TBL] [Abstract][Full Text] [Related]
18. LHCSR3 is a nonphotochemical quencher of both photosystems in Girolomoni L; Cazzaniga S; Pinnola A; Perozeni F; Ballottari M; Bassi R Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4212-4217. PubMed ID: 30782831 [TBL] [Abstract][Full Text] [Related]
19. Plant biodiversity and regulation of photosynthesis in the natural environment. Sello S; Meneghesso A; Alboresi A; Baldan B; Morosinotto T Planta; 2019 Apr; 249(4):1217-1228. PubMed ID: 30607502 [TBL] [Abstract][Full Text] [Related]
20. Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. Horton P; Ruban A J Exp Bot; 2005 Jan; 56(411):365-73. PubMed ID: 15557295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]