These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 24854722)
1. Cytosine unstacking and strand slippage at an insertion-deletion mutation sequence in an overhang-containing DNA duplex. Manjari SR; Pata JD; Banavali NK Biochemistry; 2014 Jun; 53(23):3807-16. PubMed ID: 24854722 [TBL] [Abstract][Full Text] [Related]
2. Analyzing the relationship between single base flipping and strand slippage near DNA duplex termini. Banavali NK J Phys Chem B; 2013 Nov; 117(46):14320-8. PubMed ID: 24206351 [TBL] [Abstract][Full Text] [Related]
3. Partial base flipping is sufficient for strand slippage near DNA duplex termini. Banavali NK J Am Chem Soc; 2013 Jun; 135(22):8274-82. PubMed ID: 23692220 [TBL] [Abstract][Full Text] [Related]
4. Conformational changes during normal and error-prone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence. DeLucia AM; Grindley ND; Joyce CM Biochemistry; 2007 Sep; 46(38):10790-803. PubMed ID: 17725324 [TBL] [Abstract][Full Text] [Related]
5. Structural and functional analysis of Sulfolobus solfataricus Y-family DNA polymerase Dpo4-catalyzed bypass of the malondialdehyde-deoxyguanosine adduct. Eoff RL; Stafford JB; Szekely J; Rizzo CJ; Egli M; Guengerich FP; Marnett LJ Biochemistry; 2009 Aug; 48(30):7079-88. PubMed ID: 19492857 [TBL] [Abstract][Full Text] [Related]
6. Sequence context effect on strand slippage in natural DNA primer-templates. Chi LM; Lam SL J Phys Chem B; 2012 Feb; 116(6):1999-2007. PubMed ID: 22304666 [TBL] [Abstract][Full Text] [Related]
7. Roles of the Y-family DNA polymerase Dbh in accurate replication of the Sulfolobus genome at high temperature. Sakofsky CJ; Foster PL; Grogan DW DNA Repair (Amst); 2012 Apr; 11(4):391-400. PubMed ID: 22305938 [TBL] [Abstract][Full Text] [Related]
8. Heterotrimeric PCNA increases the activity and fidelity of Dbh, a Y-family translesion DNA polymerase prone to creating single-base deletion mutations. Wu Y; Jaremko WJ; Wilson RC; Pata JD DNA Repair (Amst); 2020 Dec; 96():102967. PubMed ID: 32961405 [TBL] [Abstract][Full Text] [Related]
9. Lesion-Induced Mutation in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius and Its Avoidance by the Y-Family DNA Polymerase Dbh. Sakofsky CJ; Grogan DW Genetics; 2015 Oct; 201(2):513-23. PubMed ID: 26224736 [TBL] [Abstract][Full Text] [Related]
10. Human polymerase kappa uses a template-slippage deletion mechanism, but can realign the slipped strands to favour base substitution mutations over deletions. Mukherjee P; Lahiri I; Pata JD Nucleic Acids Res; 2013 May; 41(9):5024-35. PubMed ID: 23558743 [TBL] [Abstract][Full Text] [Related]
11. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase. Otto MR; Bloom LB; Goodman MF; Beechem JM Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Ling H; Boudsocq F; Woodgate R; Yang W Cell; 2001 Oct; 107(1):91-102. PubMed ID: 11595188 [TBL] [Abstract][Full Text] [Related]
13. The Y-family DNA polymerase Dpo4 uses a template slippage mechanism to create single-base deletions. Wu Y; Wilson RC; Pata JD J Bacteriol; 2011 May; 193(10):2630-6. PubMed ID: 21421759 [TBL] [Abstract][Full Text] [Related]
14. Three residues of the interdomain linker determine the conformation and single-base deletion fidelity of Y-family translesion polymerases. Mukherjee P; Wilson RC; Lahiri I; Pata JD J Biol Chem; 2014 Mar; 289(10):6323-6331. PubMed ID: 24415763 [TBL] [Abstract][Full Text] [Related]
15. Structural insights into the generation of single-base deletions by the Y family DNA polymerase dbh. Wilson RC; Pata JD Mol Cell; 2008 Mar; 29(6):767-79. PubMed ID: 18374650 [TBL] [Abstract][Full Text] [Related]
16. NMR investigation of DNA primer-template models: guanine templates are less prone to strand slippage upon misincorporation. Chi LM; Lam SL Biochemistry; 2009 Dec; 48(48):11478-86. PubMed ID: 19886640 [TBL] [Abstract][Full Text] [Related]
17. Visualizing sequence-governed nucleotide selectivities and mutagenic consequences through a replicative cycle: processing of a bulky carcinogen N2-dG lesion in a Y-family DNA polymerase. Xu P; Oum L; Lee YC; Geacintov NE; Broyde S Biochemistry; 2009 Jun; 48(22):4677-90. PubMed ID: 19364137 [TBL] [Abstract][Full Text] [Related]
18. Extending the understanding of mutagenicity: structural insights into primer-extension past a benzo[a]pyrene diol epoxide-DNA adduct. Perlow RA; Broyde S J Mol Biol; 2003 Apr; 327(4):797-818. PubMed ID: 12654264 [TBL] [Abstract][Full Text] [Related]
19. In vitro replication slippage by DNA polymerases from thermophilic organisms. Viguera E; Canceill D; Ehrlich SD J Mol Biol; 2001 Sep; 312(2):323-33. PubMed ID: 11554789 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of acetylene linked double-nucleobase nucleos(t)ide building blocks and polymerase construction of DNA containing cytosines in the major groove. Kielkowski P; Pohl R; Hocek M J Org Chem; 2011 May; 76(9):3457-62. PubMed ID: 21425799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]