These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 24854903)
1. Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation. Power C; Gerhard JI; Karaoulis M; Tsourlos P; Giannopoulos A J Contam Hydrol; 2014 Jul; 162-163():27-46. PubMed ID: 24854903 [TBL] [Abstract][Full Text] [Related]
2. Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation. Johnson TC; Versteeg RJ; Day-Lewis FD; Major W; Lane JW Ground Water; 2015; 53(6):920-32. PubMed ID: 25457440 [TBL] [Abstract][Full Text] [Related]
3. Integrating hydraulic tomography, electrical resistivity tomography, and partitioning interwell tracer test datasets to improve identification of pool-dominated DNAPL source zone architecture. Guo Q; Shi X; Kang X; Chang Y; Wang P; Wu J J Contam Hydrol; 2021 Aug; 241():103809. PubMed ID: 33866142 [TBL] [Abstract][Full Text] [Related]
4. Mapping and monitoring dense non-aqueous phase liquid source zone by fused surface and cross-borehole electrical resistivity tomography. Meng F; Wang J; Zhao Y J Hazard Mater; 2024 Oct; 478():135618. PubMed ID: 39181005 [TBL] [Abstract][Full Text] [Related]
5. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone. Rivett MO; Dearden RA; Wealthall GP J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120 [TBL] [Abstract][Full Text] [Related]
6. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal. Johnston CD; Davis GB; Bastow TP; Woodbury RJ; Rao PS; Annable MD; Rhodes S J Contam Hydrol; 2014 Aug; 164():100-13. PubMed ID: 24973505 [TBL] [Abstract][Full Text] [Related]
7. The use of mass depletion-mass flux reduction relationships during pumping to determine source zone mass of a reactive brominated-solvent DNAPL. Johnston CD; Davis GB; Bastow TP; Annable MD; Trefry MG; Furness A; Geste Y; Woodbury RJ; Rao PS; Rhodes S J Contam Hydrol; 2013 Jan; 144(1):122-37. PubMed ID: 23247401 [TBL] [Abstract][Full Text] [Related]
8. Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation. Chambers JE; Wilkinson PB; Wealthall GP; Loke MH; Dearden R; Wilson R; Allen D; Ogilvy RD J Contam Hydrol; 2010 Oct; 118(1-2):43-61. PubMed ID: 20728959 [TBL] [Abstract][Full Text] [Related]
9. Dissolution of dense non-aqueous phase liquids in vertical fractures: effect of finger residuals and dead-end pools. Yang Z; Niemi A; Fagerlund F; Illangasekare T; Detwiler RL J Contam Hydrol; 2013 Jun; 149():88-99. PubMed ID: 23608741 [TBL] [Abstract][Full Text] [Related]
10. Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field. Hwang YK; Endres AL; Piggott SD; Parker BL J Contam Hydrol; 2008 Apr; 97(1-2):1-12. PubMed ID: 18258330 [TBL] [Abstract][Full Text] [Related]
11. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer. Maji R; Sudicky EA J Contam Hydrol; 2008 Nov; 102(1-2):105-19. PubMed ID: 18929427 [TBL] [Abstract][Full Text] [Related]
12. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Fagerlund F; Illangasekare TH; Phenrat T; Kim HJ; Lowry GV J Contam Hydrol; 2012 Apr; 131(1-4):9-28. PubMed ID: 22326687 [TBL] [Abstract][Full Text] [Related]
13. Real-time monitoring of in situ chemical oxidation (ISCO) of dissolved TCE by integrating electrical resistivity tomography and reactive transport modeling. Han Z; Kang X; Singha K; Wu J; Shi X Water Res; 2024 Mar; 252():121195. PubMed ID: 38290236 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of a DNAPL source zone in a porous aquifer using the Partitioning Interwell Tracer Test and an inverse modelling approach. Dridi L; Pollet I; Razakarisoa O; Schäfer G J Contam Hydrol; 2009 Jun; 107(1-2):22-44. PubMed ID: 19395120 [TBL] [Abstract][Full Text] [Related]
16. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation. Page JW; Soga K; Illangasekare T J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832 [TBL] [Abstract][Full Text] [Related]
17. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling. Goode DJ; Imbrigiotta TE; Lacombe PJ J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882 [TBL] [Abstract][Full Text] [Related]
18. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones. Heiderscheidt JL; Siegrist RL; Illangasekare TH J Contam Hydrol; 2008 Nov; 102(1-2):3-16. PubMed ID: 18774622 [TBL] [Abstract][Full Text] [Related]
19. The transport behaviour of elemental mercury DNAPL in saturated porous media: analysis of field observations and two-phase flow modelling. Sweijen T; Hartog N; Marsman A; Keijzer TJ J Contam Hydrol; 2014 Jun; 161():24-34. PubMed ID: 24748026 [TBL] [Abstract][Full Text] [Related]
20. Characterization of DNAPL source zones in clay-sand media via joint inversion of DC resistivity, induced polarization and borehole data. Kang X; Power C; Kokkinaki A; Revil A; Wu J; Shi X; Deng Y J Contam Hydrol; 2023 Sep; 258():104240. PubMed ID: 37683375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]