These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24854954)

  • 1. Primary vitamin D receptor target genes as biomarkers for the vitamin D3 status in the hematopoietic system.
    Wilfinger J; Seuter S; Tuomainen TP; Virtanen JK; Voutilainen S; Nurmi T; de Mello VD; Uusitupa M; Carlberg C
    J Nutr Biochem; 2014 Aug; 25(8):875-84. PubMed ID: 24854954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting high from low responders in a vitamin D3 intervention study.
    Saksa N; Neme A; Ryynänen J; Uusitupa M; de Mello VD; Voutilainen S; Nurmi T; Virtanen JK; Tuomainen TP; Carlberg C
    J Steroid Biochem Mol Biol; 2015 Apr; 148():275-82. PubMed ID: 25448738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals.
    Ryynänen J; Neme A; Tuomainen TP; Virtanen JK; Voutilainen S; Nurmi T; de Mello VD; Uusitupa M; Carlberg C
    Mol Nutr Food Res; 2014 Oct; 58(10):2036-45. PubMed ID: 24975273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes.
    Seuter S; Pehkonen P; Heikkinen S; Carlberg C
    Biochim Biophys Acta; 2013 Dec; 1829(12):1266-75. PubMed ID: 24185200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ASAP2 gene is a primary target of 1,25-dihydroxyvitamin D3 in human monocytes and macrophages.
    Seuter S; Ryynänen J; Carlberg C
    J Steroid Biochem Mol Biol; 2014 Oct; 144 Pt A():12-8. PubMed ID: 23999061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relevance of vitamin D receptor target genes for monitoring the vitamin D responsiveness of primary human cells.
    Vukić M; Neme A; Seuter S; Saksa N; de Mello VD; Nurmi T; Uusitupa M; Tuomainen TP; Virtanen JK; Carlberg C
    PLoS One; 2015; 10(4):e0124339. PubMed ID: 25875760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipopolysaccharide negatively modulates vitamin D action by down-regulating expression of vitamin D-induced VDR in human monocytic THP-1 cells.
    Pramanik R; Asplin JR; Lindeman C; Favus MJ; Bai S; Coe FL
    Cell Immunol; 2004; 232(1-2):137-43. PubMed ID: 15876428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular endocrinology of vitamin D on the epigenome level.
    Carlberg C
    Mol Cell Endocrinol; 2017 Sep; 453():14-21. PubMed ID: 28315703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The vitamin D hormone and its nuclear receptor: molecular actions and disease states.
    Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK
    J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What do we learn from the genome-wide perspective on vitamin D3?
    Carlberg C
    Anticancer Res; 2015 Feb; 35(2):1143-51. PubMed ID: 25667505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the chromatin organization of vitamin D target genes by multiple vitamin D receptor binding sites.
    Carlberg C; Dunlop TW; Saramäki A; Sinkkonen L; Matilainen M; Väisänen S
    J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):338-43. PubMed ID: 17234401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hierarchical regulatory network analysis of the vitamin D induced transcriptome reveals novel regulators and complete VDR dependency in monocytes.
    Warwick T; Schulz MH; Günther S; Gilsbach R; Neme A; Carlberg C; Brandes RP; Seuter S
    Sci Rep; 2021 Mar; 11(1):6518. PubMed ID: 33753848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)₂vitamin D₃: genomic and non-genomic mechanisms.
    Haussler MR; Jurutka PW; Mizwicki M; Norman AW
    Best Pract Res Clin Endocrinol Metab; 2011 Aug; 25(4):543-59. PubMed ID: 21872797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin D-dependent chromatin association of CTCF in human monocytes.
    Neme A; Seuter S; Carlberg C
    Biochim Biophys Acta; 2016 Nov; 1859(11):1380-1388. PubMed ID: 27569350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered nuclear receptor corepressor expression attenuates vitamin D receptor signaling in breast cancer cells.
    Banwell CM; MacCartney DP; Guy M; Miles AE; Uskokovic MR; Mansi J; Stewart PM; O'Neill LP; Turner BM; Colston KW; Campbell MJ
    Clin Cancer Res; 2006 Apr; 12(7 Pt 1):2004-13. PubMed ID: 16609009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The first genome-wide view of vitamin D receptor locations and their mechanistic implications.
    Carlberg C; Seuter S; Heikkinen S
    Anticancer Res; 2012 Jan; 32(1):271-82. PubMed ID: 22213316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural metabolites of 1alpha,25-dihydroxyvitamin D(3) retain biologic activity mediated through the vitamin D receptor.
    Harant H; Spinner D; Reddy GS; Lindley IJ
    J Cell Biochem; 2000 Apr; 78(1):112-20. PubMed ID: 10797570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of genomic vitamin D receptor binding sites through chromatin looping and opening.
    Seuter S; Neme A; Carlberg C
    PLoS One; 2014; 9(4):e96184. PubMed ID: 24763502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes.
    Carlberg C
    Front Immunol; 2019; 10():2211. PubMed ID: 31572402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy.
    Heikkinen S; Väisänen S; Pehkonen P; Seuter S; Benes V; Carlberg C
    Nucleic Acids Res; 2011 Nov; 39(21):9181-93. PubMed ID: 21846776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.