BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24855025)

  • 1. Macromolecular sensing of RNAs by exploiting conformational changes in supramolecular nanostructures.
    Han SH; Kim HW; Jeong WJ; Lim YB
    Biomacromolecules; 2014 Jul; 15(7):2642-7. PubMed ID: 24855025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired self-assembled peptide nanofibers with thermostable multivalent α-helices.
    Han SH; Lee MK; Lim YB
    Biomacromolecules; 2013 May; 14(5):1594-9. PubMed ID: 23550841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based design of fluorescent biosensors from ribonucleopeptide complexes.
    Hayashi H; Inoue M; Morii T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):95-6. PubMed ID: 18029603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chameleon-like self-assembling peptides for adaptable biorecognition nanohybrids.
    Jeong WJ; Choi SJ; Choi JS; Lim YB
    ACS Nano; 2013 Aug; 7(8):6850-7. PubMed ID: 23844930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid requirement for the high affinity binding of a selected arginine-rich peptide with the HIV Rev-response element RNA.
    Sugaya M; Nishino N; Katoh A; Harada K
    J Pept Sci; 2008 Aug; 14(8):924-35. PubMed ID: 18351707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stepwise functionalization of ribonucleopeptides: optimization of the response of fluorescent ribonucleopeptide sensors for ATP.
    Hasegawa T; Hagihara M; Fukuda M; Morii T
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(10-12):1277-81. PubMed ID: 18066768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free fluorescent DNA biosensors based on metallointercalators and nanomaterials.
    Shi S; Wang X; Sun W; Wang X; Yao T; Ji L
    Methods; 2013 Dec; 64(3):305-14. PubMed ID: 23867341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptides derived from HIV-1 Rev inhibit HIV-1 integrase in a shiftide mechanism.
    Hayouka Z; Rosenbluh J; Levin A; Maes M; Loyter A; Friedler A
    Biopolymers; 2008; 90(4):481-7. PubMed ID: 18219678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent-sensitive dyes to report protein conformational changes in living cells.
    Toutchkine A; Kraynov V; Hahn K
    J Am Chem Soc; 2003 Apr; 125(14):4132-45. PubMed ID: 12670235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the design of fluorescent ratiometric nanosensors.
    Doussineau T; Schulz A; Lapresta-Fernandez A; Moro A; Körsten S; Trupp S; Mohr GJ
    Chemistry; 2010 Sep; 16(34):10290-9. PubMed ID: 20665579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticles for microfluidics-based biosensing of PCR products by hybridization-induced fluorescence quenching.
    Li YT; Liu HS; Lin HP; Chen SH
    Electrophoresis; 2005 Dec; 26(24):4743-50. PubMed ID: 16283695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of ratiometric fluorescent sensors by ribonucleopeptides.
    Annoni C; Nakata E; Tamura T; Liew FF; Nakano S; Gelmi ML; Morii T
    Org Biomol Chem; 2012 Nov; 10(44):8767-9. PubMed ID: 23069733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronous fluorescence based biosensor for albumin determination by cooperative binding of fluorescence probe in a supra-biomolecular host-protein assembly.
    Patra D
    Biosens Bioelectron; 2010 Jan; 25(5):1149-54. PubMed ID: 19880306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational investigation of the HIV-1 Rev multimerization using molecular dynamics simulations and binding free energy calculations.
    Venken T; Daelemans D; De Maeyer M; Voet A
    Proteins; 2012 Jun; 80(6):1633-46. PubMed ID: 22447650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A peptide-based, ratiometric biosensor construct for direct fluorescence detection of a protein analyte.
    Enander K; Choulier L; Olsson AL; Yushchenko DA; Kanmert D; Klymchenko AS; Demchenko AP; Mély Y; Altschuh D
    Bioconjug Chem; 2008 Sep; 19(9):1864-70. PubMed ID: 18693760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide beacons: a new design for polypeptide-based optical biosensors.
    Oh KJ; Cash KJ; Hugenberg V; Plaxco KW
    Bioconjug Chem; 2007; 18(3):607-9. PubMed ID: 17461545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multivalent interactions regulate signal transduction in a self-assembled Hg2+ sensor.
    Maiti S; Pezzato C; Garcia Martin S; Prins LJ
    J Am Chem Soc; 2014 Aug; 136(32):11288-91. PubMed ID: 25053347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a hybrid biosensor for enhanced phosphopeptide recognition based on a phosphoprotein binding domain coupled with a fluorescent chemosensor.
    Anai T; Nakata E; Koshi Y; Ojida A; Hamachi I
    J Am Chem Soc; 2007 May; 129(19):6232-9. PubMed ID: 17441721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent peptide indicator displacement assay for monitoring interactions between RNA and RNA binding proteins.
    Jeong HS; Choi SM; Kim HW; Park JW; Park HN; Park SM; Jang SK; Rhee YM; Kim BH
    Mol Biosyst; 2013 May; 9(5):948-51. PubMed ID: 23255000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual fluorescent labelling of cellulose nanocrystals for pH sensing.
    Nielsen LJ; Eyley S; Thielemans W; Aylott JW
    Chem Commun (Camb); 2010 Dec; 46(47):8929-31. PubMed ID: 21046033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.