BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24855025)

  • 21. Peptide-based fluorescence biosensors for detection/measurement of nanoparticles.
    Akinloye O; Krishnamurthy R; Wishart D; Goss GG
    Anal Bioanal Chem; 2017 Feb; 409(4):903-915. PubMed ID: 27904938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Core/Shell fluorescent silica nanoparticles for chemical sensing: towards single-particle laboratories.
    Burns A; Sengupta P; Zedayko T; Baird B; Wiesner U
    Small; 2006 Jun; 2(6):723-6. PubMed ID: 17193111
    [No Abstract]   [Full Text] [Related]  

  • 23. Development of ribonucleopeptide-based fluorescent sensors for biologically active amines based on the stepwise molding strategy.
    Tainaka K; Hasegawa T; Fukuda M; Nakano S; Fujieda N; Morii T
    Nucleic Acids Symp Ser (Oxf); 2008; (52):201-2. PubMed ID: 18776323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved hydration-sensitive dual-fluorescence labels for monitoring peptide-nucleic acid interactions.
    Zamotaiev OM; Postupalenko VY; Shvadchak VV; Pivovarenko VG; Klymchenko AS; Mély Y
    Bioconjug Chem; 2011 Jan; 22(1):101-7. PubMed ID: 21174445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural dynamics of HIV-1 Rev and its complexes with RRE and 5S RNA.
    Lam WC; Seifert JM; Amberger F; Graf C; Auer M; Millar DP
    Biochemistry; 1998 Feb; 37(7):1800-9. PubMed ID: 9485305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembling nanomaterials: monitoring the formation of amyloid fibrils, with a focus on small-angle X-ray scattering.
    Sawyer EB; Gras SL
    Methods Mol Biol; 2013; 996():77-101. PubMed ID: 23504419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescent nanoparticles assembled from a poly(ionic liquid) for selective sensing of copper ions.
    Cui K; Lu X; Cui W; Wu J; Chen X; Lu Q
    Chem Commun (Camb); 2011 Jan; 47(3):920-2. PubMed ID: 21079827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-specific phosphorylation of the human immunodeficiency virus type-1 Rev protein accelerates formation of an efficient RNA-binding conformation.
    Fouts DE; True HL; Cengel KA; Celander DW
    Biochemistry; 1997 Oct; 36(43):13256-62. PubMed ID: 9341215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A programmable fluorescent viral nanoblock: sensing made easy in a single step.
    Soto CM
    Methods Mol Biol; 2014; 1108():155-72. PubMed ID: 24243248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile conversion of RNA aptamers to modular fluorescent sensors with tunable detection wavelengths.
    Nakano S; Nakata E; Morii T
    Bioorg Med Chem Lett; 2011 Aug; 21(15):4503-6. PubMed ID: 21719284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Semisynthetic fluorescent sensor proteins based on self-labeling protein tags.
    Brun MA; Tan KT; Nakata E; Hinner MJ; Johnsson K
    J Am Chem Soc; 2009 Apr; 131(16):5873-84. PubMed ID: 19348459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of ribonucleopeptide-based fluorescent sensors for biologically active amines.
    Hasegawa T; Hayashi H; Morii T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):423-4. PubMed ID: 18029767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An isostructural G-G to A-A substitution within the HIV RRE RNA switches the specificity towards arginine-rich peptides.
    Aoyama S; Sugaya M; Kobayashi C; Masuda K; Maeda T; Sakamoto T; Kawai G; Katoh A; Harada K
    Nucleic Acids Symp Ser (Oxf); 2009; (53):271-2. PubMed ID: 19749365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sugar sensing based on induced pH changes.
    Kim Y; Hilderbrand SA; Weissleder R; Tung CH
    Chem Commun (Camb); 2007 Jun; (22):2299-301. PubMed ID: 17534523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduction-triggered fluorescence probe for peptide-templated reactions.
    Shibata A; Abe H; Furukawa K; Tsuneda S; Ito Y
    Chem Pharm Bull (Tokyo); 2009 Nov; 57(11):1223-6. PubMed ID: 19881271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative Ratiometric Biosensors Based on Fluorescent Ferrocene-Modified Histidine Dipeptide Nanoassemblies.
    Kong J; Zhao S; Han X; Li W; Zhang J; Wang Y; Shen X; Xia Y; Li Z
    Anal Chem; 2023 Mar; 95(11):5053-5060. PubMed ID: 36892972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescent biosensors of intracellular targets from genetically encoded reporters to modular polypeptide probes.
    Morris MC
    Cell Biochem Biophys; 2010; 56(1):19-37. PubMed ID: 19921468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-activity studies on the fluorescent indicator in a displacement assay for the screening of small molecules binding to RNA.
    Umemoto S; Im S; Zhang J; Hagihara M; Murata A; Harada Y; Fukuzumi T; Wazaki T; Sasaoka S; Nakatani K
    Chemistry; 2012 Aug; 18(32):9999-10008. PubMed ID: 22763984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors.
    Altschuh D; Oncul S; Demchenko AP
    J Mol Recognit; 2006; 19(6):459-77. PubMed ID: 17089349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disassembly-driven turn-on fluorescent nanoprobes for selective protein detection.
    Mizusawa K; Ishida Y; Takaoka Y; Miyagawa M; Tsukiji S; Hamachi I
    J Am Chem Soc; 2010 Jun; 132(21):7291-3. PubMed ID: 20462178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.