These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24855045)

  • 1. Monocular distance estimation from optic flow during active landing maneuvers.
    van Breugel F; Morgansen K; Dickinson MH
    Bioinspir Biomim; 2014 Jun; 9(2):025002. PubMed ID: 24855045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monocular distance estimation with optical flow maneuvers and efference copies: a stability-based strategy.
    de Croon GC
    Bioinspir Biomim; 2016 Jan; 11(1):016004. PubMed ID: 26740501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A direct optic flow-based strategy for inverse flight altitude estimation with monocular vision and IMU measurements.
    Chirarattananon P
    Bioinspir Biomim; 2018 Mar; 13(3):036004. PubMed ID: 29256435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A μ analysis-based, controller-synthesis framework for robust bioinspired visual navigation in less-structured environments.
    Keshavan J; Gremillion G; Escobar-Alvarez H; Humbert JS
    Bioinspir Biomim; 2014 Jun; 9(2):025011. PubMed ID: 24852145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli.
    Fuller SB; Karpelson M; Censi A; Ma KY; Wood RJ
    J R Soc Interface; 2014 Aug; 11(97):20140281. PubMed ID: 24942846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers.
    Expert F; Ruffier F
    Bioinspir Biomim; 2015 Feb; 10(2):026003. PubMed ID: 25717052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optic flow-based collision-free strategies: From insects to robots.
    Serres JR; Ruffier F
    Arthropod Struct Dev; 2017 Sep; 46(5):703-717. PubMed ID: 28655645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A test bed for insect-inspired robotic control.
    Reiser MB; Dickinson MH
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2267-85. PubMed ID: 14599319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bio-inspired flying robot sheds light on insect piloting abilities.
    Franceschini N; Ruffier F; Serres J
    Curr Biol; 2007 Feb; 17(4):329-35. PubMed ID: 17291757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust post-stall perching with a simple fixed-wing glider using LQR-Trees.
    Moore J; Cory R; Tedrake R
    Bioinspir Biomim; 2014 Jun; 9(2):025013. PubMed ID: 24852406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive control of a millimeter-scale flapping-wing robot.
    Chirarattananon P; Ma KY; Wood RJ
    Bioinspir Biomim; 2014 Jun; 9(2):025004. PubMed ID: 24855052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insect inspired vision-based velocity estimation through spatial pooling of optic flow during linear motion.
    Lingenfelter B; Nag A; van Breugel F
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34412040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly.
    Elzinga MJ; van Breugel F; Dickinson MH
    Bioinspir Biomim; 2014 Jun; 9(2):025001. PubMed ID: 24855029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired flight control.
    Lentink D
    Bioinspir Biomim; 2014 Jun; 9(2):020301. PubMed ID: 24854957
    [No Abstract]   [Full Text] [Related]  

  • 15. Bio-inspired modeling and implementation of the ocelli visual system of flying insects.
    Gremillion G; Humbert JS; Krapp HG
    Biol Cybern; 2014 Dec; 108(6):735-46. PubMed ID: 25217116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of lateral optic flow cues in hawkmoth flight control.
    Stöckl A; Grittner R; Pfeiffer K
    J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31196978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.
    Srinivasan MV
    Physiol Rev; 2011 Apr; 91(2):413-60. PubMed ID: 21527730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flocking algorithm for autonomous flying robots.
    Virágh C; Vásárhelyi G; Tarcai N; Szörényi T; Somorjai G; Nepusz T; Vicsek T
    Bioinspir Biomim; 2014 Jun; 9(2):025012. PubMed ID: 24852272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The visual control of landing and obstacle avoidance in the fruit fly Drosophila melanogaster.
    van Breugel F; Dickinson MH
    J Exp Biol; 2012 Jun; 215(Pt 11):1783-98. PubMed ID: 22573757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Landing maneuvers of houseflies on vertical and inverted surfaces.
    Balebail S; Raja SK; Sane SP
    PLoS One; 2019; 14(8):e0219861. PubMed ID: 31412069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.