These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24855119)

  • 1. Longitudinal data subject to irregular observation: A review of methods with a focus on visit processes, assumptions, and study design.
    Pullenayegum EM; Lim LS
    Stat Methods Med Res; 2016 Dec; 25(6):2992-3014. PubMed ID: 24855119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of longitudinal data from outcome-dependent visit processes: Failure of proposed methods in realistic settings and potential improvements.
    Neuhaus JM; McCulloch CE; Boylan RD
    Stat Med; 2018 Dec; 37(29):4457-4471. PubMed ID: 30112825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Randomized Trials With Repeatedly Measured Outcomes: Handling Irregular and Potentially Informative Assessment Times.
    Pullenayegum EM; Scharfstein DO
    Epidemiol Rev; 2022 Dec; 44(1):121-137. PubMed ID: 36259969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal studies that use data collected as part of usual care risk reporting biased results: a systematic review.
    Farzanfar D; Abumuamar A; Kim J; Sirotich E; Wang Y; Pullenayegum E
    BMC Med Res Methodol; 2017 Sep; 17(1):133. PubMed ID: 28877680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biased and unbiased estimation in longitudinal studies with informative visit processes.
    McCulloch CE; Neuhaus JM; Olin RL
    Biometrics; 2016 Dec; 72(4):1315-1324. PubMed ID: 26990830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustered longitudinal data subject to irregular observation.
    Pullenayegum EM; Birken C; Maguire J;
    Stat Methods Med Res; 2021 Apr; 30(4):1081-1100. PubMed ID: 33509042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the extent of visit irregularity in longitudinal data.
    Lokku A; Birken CS; Maguire JL; Pullenayegum EM;
    Int J Biostat; 2022 Nov; 18(2):487-520. PubMed ID: 34392639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodological and conceptual issues regarding occupational psychosocial coronary heart disease epidemiology.
    Burr H; Formazin M; Pohrt A
    Scand J Work Environ Health; 2016 May; 42(3):251-5. PubMed ID: 26960179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of parametric failure time distributions based on interval-censored data with irregular dependent follow-up.
    Zhu Y; Lawless JF; Cotton CA
    Stat Med; 2017 May; 36(10):1548-1567. PubMed ID: 28132401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fallacies of last observation carried forward analyses.
    Lachin JM
    Clin Trials; 2016 Apr; 13(2):161-8. PubMed ID: 26400875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple outputation for the analysis of longitudinal data subject to irregular observation.
    Pullenayegum EM
    Stat Med; 2016 May; 35(11):1800-18. PubMed ID: 26661690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian Bernoulli-Exponential joint model for binary longitudinal outcomes and informative time with applications to bladder cancer recurrence data.
    Oduro MS
    BMC Med Res Methodol; 2024 Mar; 24(1):54. PubMed ID: 38429679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response to letter to the editor from Dr Rahman Shiri: The challenging topic of suicide across occupational groups.
    Niedhammer I; Milner A; Witt K; Klingelschmidt J; Khireddine-Medouni I; Alexopoulos EC; Toivanen S; Chastang JF; LaMontagne AD
    Scand J Work Environ Health; 2018 Jan; 44(1):108-110. PubMed ID: 29218357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explicating the Conditions Under Which Multilevel Multiple Imputation Mitigates Bias Resulting from Random Coefficient-Dependent Missing Longitudinal Data.
    Gottfredson NC; Sterba SK; Jackson KM
    Prev Sci; 2017 Jan; 18(1):12-19. PubMed ID: 27866307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using multiple imputation to estimate cumulative distribution functions in longitudinal data analysis with data missing at random.
    Dinh P
    Pharm Stat; 2013; 12(5):260-7. PubMed ID: 24019202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doubly robust estimation, optimally truncated inverse-intensity weighting and increment-based methods for the analysis of irregularly observed longitudinal data.
    Pullenayegum EM; Feldman BM
    Stat Med; 2013 Mar; 32(6):1054-72. PubMed ID: 23047604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning About Missing Data Mechanisms in Electronic Health Records-based Research: A Survey-based Approach.
    Haneuse S; Bogart A; Jazic I; Westbrook EO; Boudreau D; Theis MK; Simon GE; Arterburn D
    Epidemiology; 2016 Jan; 27(1):82-90. PubMed ID: 26484425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple imputation compared with some informative dropout procedures in the estimation and comparison of rates of change in longitudinal clinical trials with dropouts.
    Ali MW; Siddiqui O
    J Biopharm Stat; 2000 May; 10(2):165-81. PubMed ID: 10803723
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.