These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24855152)

  • 1. The gut hormone ghrelin partially reverses energy substrate metabolic alterations in the failing heart.
    Mitacchione G; Powers JC; Grifoni G; Woitek F; Lam A; Ly L; Settanni F; Makarewich CA; McCormick R; Trovato L; Houser SR; Granata R; Recchia FA
    Circ Heart Fail; 2014 Jul; 7(4):643-51. PubMed ID: 24855152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute and Chronic Increases of Circulating FSTL1 Normalize Energy Substrate Metabolism in Pacing-Induced Heart Failure.
    Seki M; Powers JC; Maruyama S; Zuriaga MA; Wu CL; Kurishima C; Kim L; Johnson J; Poidomani A; Wang T; Muñoz E; Rajan S; Park JY; Walsh K; Recchia FA
    Circ Heart Fail; 2018 Jan; 11(1):e004486. PubMed ID: 29317401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse changes in cardiac substrate oxidation in dogs recovering from heart failure.
    Qanud K; Mamdani M; Pepe M; Khairallah RJ; Gravel J; Lei B; Gupte SA; Sharov VG; Sabbah HN; Stanley WC; Recchia FA
    Am J Physiol Heart Circ Physiol; 2008 Nov; 295(5):H2098-105. PubMed ID: 18820029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic activation of peroxisome proliferator-activated receptor-alpha with fenofibrate prevents alterations in cardiac metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure.
    Labinskyy V; Bellomo M; Chandler MP; Young ME; Lionetti V; Qanud K; Bigazzi F; Sampietro T; Stanley WC; Recchia FA
    J Pharmacol Exp Ther; 2007 Apr; 321(1):165-71. PubMed ID: 17215446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure.
    Osorio JC; Stanley WC; Linke A; Castellari M; Diep QN; Panchal AR; Hintze TH; Lopaschuk GD; Recchia FA
    Circulation; 2002 Jul; 106(5):606-12. PubMed ID: 12147544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beneficial effects of acute inhibition of the oxidative pentose phosphate pathway in the failing heart.
    Vimercati C; Qanud K; Mitacchione G; Sosnowska D; Ungvari Z; Sarnari R; Mania D; Patel N; Hintze TH; Gupte SA; Stanley WC; Recchia FA
    Am J Physiol Heart Circ Physiol; 2014 Mar; 306(5):H709-17. PubMed ID: 24414069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central acylated ghrelin improves memory function and hippocampal AMPK activation and partly reverses the impairment of energy and glucose metabolism in rats infused with β-amyloid.
    Kang S; Moon NR; Kim DS; Kim SH; Park S
    Peptides; 2015 Sep; 71():84-93. PubMed ID: 26188171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preservation of Acyl Coenzyme A Attenuates Pathological and Metabolic Cardiac Remodeling Through Selective Lipid Trafficking.
    Goldenberg JR; Carley AN; Ji R; Zhang X; Fasano M; Schulze PC; Lewandowski ED
    Circulation; 2019 Jun; 139(24):2765-2777. PubMed ID: 30909726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moderate severity heart failure does not involve a downregulation of myocardial fatty acid oxidation.
    Chandler MP; Kerner J; Huang H; Vazquez E; Reszko A; Martini WZ; Hoppel CL; Imai M; Rastogi S; Sabbah HN; Stanley WC
    Am J Physiol Heart Circ Physiol; 2004 Oct; 287(4):H1538-43. PubMed ID: 15191896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acylation of ghrelin is increased in heart failure and decreases post heart transplantation.
    Zabarovskaja S; Freda P; Williams JJ; Kunavarapu C; Lamanca J; Mancini D; Lund LH
    Scand Cardiovasc J; 2014 Dec; 48(6):343-8. PubMed ID: 25130063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Des-acyl ghrelin has specific binding sites and different metabolic effects from ghrelin in cardiomyocytes.
    Lear PV; Iglesias MJ; Feijóo-Bandín S; Rodríguez-Penas D; Mosquera-Leal A; García-Rúa V; Gualillo O; Ghè C; Arnoletti E; Muccioli G; Diéguez C; González-Juanatey JR; Lago F
    Endocrinology; 2010 Jul; 151(7):3286-98. PubMed ID: 20410201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of PPAR-α in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure.
    Kaimoto S; Hoshino A; Ariyoshi M; Okawa Y; Tateishi S; Ono K; Uchihashi M; Fukai K; Iwai-Kanai E; Matoba S
    Am J Physiol Heart Circ Physiol; 2017 Feb; 312(2):H305-H313. PubMed ID: 28011586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency.
    Ho KL; Zhang L; Wagg C; Al Batran R; Gopal K; Levasseur J; Leone T; Dyck JRB; Ussher JR; Muoio DM; Kelly DP; Lopaschuk GD
    Cardiovasc Res; 2019 Sep; 115(11):1606-1616. PubMed ID: 30778524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy.
    Nikolaidis LA; Elahi D; Hentosz T; Doverspike A; Huerbin R; Zourelias L; Stolarski C; Shen YT; Shannon RP
    Circulation; 2004 Aug; 110(8):955-61. PubMed ID: 15313949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Astragaloside IV alleviates heart failure via activating PPARα to switch glycolysis to fatty acid β-oxidation.
    Dong Z; Zhao P; Xu M; Zhang C; Guo W; Chen H; Tian J; Wei H; Lu R; Cao T
    Sci Rep; 2017 Jun; 7(1):2691. PubMed ID: 28578382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of the dual-specificity tyrosine phosphorylation-regulated kinase 1A-alternative splicing factor-calcium/calmodulin-dependent protein kinase IIδ signaling pathway in myocardial infarction-induced heart failure of rats.
    He J; Yao J; Sheng H; Zhu J
    J Card Fail; 2015 Sep; 21(9):751-60. PubMed ID: 26067684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets.
    Fukushima A; Milner K; Gupta A; Lopaschuk GD
    Curr Pharm Des; 2015; 21(25):3654-64. PubMed ID: 26166604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CVT-4325 inhibits myocardial fatty acid uptake and improves left ventricular systolic function without increasing myocardial oxygen consumption in dogs with chronic heart failure.
    Imai M; Rastogi S; Sharma N; Chandler MP; Sharov VG; Blackburn B; Belardinelli L; Stanley WC; Sabbah HN
    Cardiovasc Drugs Ther; 2007 Feb; 21(1):9-15. PubMed ID: 17119875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute vagal stimulation attenuates cardiac metabolic response to β-adrenergic stress.
    Vimercati C; Qanud K; Ilsar I; Mitacchione G; Sarnari R; Mania D; Faulk R; Stanley WC; Sabbah HN; Recchia FA
    J Physiol; 2012 Dec; 590(23):6065-74. PubMed ID: 22966163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog.
    Recchia FA; McConnell PI; Bernstein RD; Vogel TR; Xu X; Hintze TH
    Circ Res; 1998 Nov; 83(10):969-79. PubMed ID: 9815144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.