BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24855353)

  • 21. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese.
    Rashidinejad A; Birch EJ; Sun-Waterhouse D; Everett DW
    Food Chem; 2014 Aug; 156():176-83. PubMed ID: 24629955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ascorbic acid offsets the inhibitory effect of bioactive dietary polyphenolic compounds on transepithelial iron transport in Caco-2 intestinal cells.
    Kim EY; Ham SK; Bradke D; Ma Q; Han O
    J Nutr; 2011 May; 141(5):828-34. PubMed ID: 21430251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory Effects of Green Tea and (-)-Epigallocatechin Gallate on Transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-Glycoprotein.
    Knop J; Misaka S; Singer K; Hoier E; Müller F; Glaeser H; König J; Fromm MF
    PLoS One; 2015; 10(10):e0139370. PubMed ID: 26426900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Curcumin as a permeability enhancer enhanced the antihyperlipidemic activity of dietary green tea extract.
    Pandit AP; Joshi SR; Dalal PS; Patole VC
    BMC Complement Altern Med; 2019 Jun; 19(1):129. PubMed ID: 31196040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Green Tea and (-)-Epigallocatechin Gallate on the Pharmacokinetics of Rosuvastatin.
    Huang S; Xu Q; Liu L; Bian Y; Zhang S; Huang C; Miao L
    Curr Drug Metab; 2020; 21(6):471-478. PubMed ID: 32407265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transepithelial transport of theasinensins through Caco-2 cell monolayers and their absorption in Sprague-Dawley rats after oral administration.
    Qiu J; Kitamura Y; Miyata Y; Tamaru S; Tanaka K; Tanaka T; Matsui T
    J Agric Food Chem; 2012 Aug; 60(32):8036-43. PubMed ID: 22831633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of coated bovine serum albumin (BSA)-epigallocatechin gallate (EGCG) nanoparticles and their transport across monolayers of human intestinal epithelial Caco-2 cells.
    Li Z; Ha J; Zou T; Gu L
    Food Funct; 2014 Jun; 5(6):1278-85. PubMed ID: 24741679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioactive peptides/chitosan nanoparticles enhance cellular antioxidant activity of (-)-epigallocatechin-3-gallate.
    Hu B; Ting Y; Zeng X; Huang Q
    J Agric Food Chem; 2013 Jan; 61(4):875-81. PubMed ID: 23293838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bombesin conjugated solid lipid nanoparticles for improved delivery of epigallocatechin gallate for breast cancer treatment.
    Radhakrishnan R; Pooja D; Kulhari H; Gudem S; Ravuri HG; Bhargava S; Ramakrishna S
    Chem Phys Lipids; 2019 Nov; 224():104770. PubMed ID: 30965023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular uptake and cytotoxicity of chitosan-caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate.
    Hu B; Ting Y; Zeng X; Huang Q
    Carbohydr Polym; 2012 Jun; 89(2):362-70. PubMed ID: 24750731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tea catechin auto-oxidation dimers are accumulated and retained by Caco-2 human intestinal cells.
    Neilson AP; Song BJ; Sapper TN; Bomser JA; Ferruzzi MG
    Nutr Res; 2010 May; 30(5):327-40. PubMed ID: 20579525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting the effect of tea polyphenols on ticagrelor by incorporating transporter-enzyme interplay mechanism.
    Liu S; Wang Z; Hou L; Tian X; Zhang X; Cai W
    Chem Biol Interact; 2020 Oct; 330():109228. PubMed ID: 32827518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner in human intestinal Caco-2 cells.
    Ma Q; Kim EY; Lindsay EA; Han O
    J Food Sci; 2011; 76(5):H143-50. PubMed ID: 22417433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Suppressive effect of nobiletin and epicatechin gallate on fructose uptake in human intestinal epithelial Caco-2 cells.
    Satsu H; Awara S; Unno T; Shimizu M
    Biosci Biotechnol Biochem; 2018 Apr; 82(4):636-646. PubMed ID: 29191128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elucidation of the transport mechanism of baicalin and the influence of a Radix Angelicae Dahuricae extract on the absorption of baicalin in a Caco-2 cell monolayer model.
    Zhu ML; Liang XL; Zhao LJ; Liao ZG; Zhao GW; Cao YC; Zhang J; Luo Y
    J Ethnopharmacol; 2013 Nov; 150(2):553-9. PubMed ID: 24076259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport and metabolism of the tea flavonoid (-)-epicatechin by the human intestinal cell line Caco-2.
    Vaidyanathan JB; Walle T
    Pharm Res; 2001 Oct; 18(10):1420-5. PubMed ID: 11697467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of MPP+ uptake by tea and some of its components in Caco-2 cells.
    Monteiro R; Calhau C; Martel F; Faria A; Mateus N; Azevedo I
    Naunyn Schmiedebergs Arch Pharmacol; 2005 Aug; 372(2):147-52. PubMed ID: 16193318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Absorptive interactions of concurrent oral administration of (+)-catechin and puerarin in rats and the underlying mechanisms.
    Su HF; Lin Q; Wang XY; Fu Y; Gong T; Sun X; Zhang ZR
    Acta Pharmacol Sin; 2016 Apr; 37(4):545-54. PubMed ID: 26972494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas.
    Fang JY; Lee WR; Shen SC; Huang YL
    J Dermatol Sci; 2006 May; 42(2):101-9. PubMed ID: 16423506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells.
    Hong J; Lu H; Meng X; Ryu JH; Hara Y; Yang CS
    Cancer Res; 2002 Dec; 62(24):7241-6. PubMed ID: 12499265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.