These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24855353)

  • 81. Effect of bioactive dietary polyphenols on zinc transport across the intestinal Caco-2 cell monolayers.
    Kim EY; Pai TK; Han O
    J Agric Food Chem; 2011 Apr; 59(8):3606-12. PubMed ID: 21410257
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Absorption, metabolism and antioxidative effects of tea catechin in humans.
    Miyazawa T
    Biofactors; 2000; 13(1-4):55-9. PubMed ID: 11237200
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Development of gelatinized-core liposomes for the oral delivery of EGCG with improved stability, release property, and cellular antioxidant activity.
    Kim Y; Baek Y; Jeong E; Lee HG
    Colloids Surf B Biointerfaces; 2024 Feb; 234():113723. PubMed ID: 38194838
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Green tea catechin loaded niosomes: formulation and their characterization for food fortification.
    Gadapa S; Battula SN; Mor S; Pushpadass HA; Naik LN; Emerald ME
    J Food Sci Technol; 2022 Sep; 59(9):3669-3682. PubMed ID: 35875240
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Impact of Bioconversion of Gallated Catechins and Flavonol Glycosides on Bioaccessibility and Intestinal Cellular Uptake of Catechins.
    Choi EH; Rha CS; Balusamy SR; Kim DO; Shim SM
    J Agric Food Chem; 2019 Feb; 67(8):2331-2339. PubMed ID: 30767525
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Dietary pretreatment with green tea polyphenol, (-)-epigallocatechin-3-gallate reduces the bioavailability and hepatotoxicity of subsequent oral bolus doses of (-)-epigallocatechin-3-gallate.
    James KD; Forester SC; Lambert JD
    Food Chem Toxicol; 2015 Feb; 76():103-8. PubMed ID: 25528115
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Presence or absence of a gallate moiety on catechins affects their cellular transport.
    Kadowaki M; Sugihara N; Tagashira T; Terao K; Furuno K
    J Pharm Pharmacol; 2008 Sep; 60(9):1189-95. PubMed ID: 18718123
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers.
    Liang E; Proudfoot J; Yazdanian M
    Pharm Res; 2000 Oct; 17(10):1168-74. PubMed ID: 11145220
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The Effective Solubilization of Hydrophobic Drugs Using Epigallocatechin Gallate or Tannic Acid-Based Formulations.
    Jackson JK; Letchford K
    J Pharm Sci; 2016 Oct; 105(10):3143-3152. PubMed ID: 27522526
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction.
    Lu YC; Luo PC; Huang CW; Leu YL; Wang TH; Wei KC; Wang HE; Ma YH
    Nanoscale; 2014 Sep; 6(17):10297-306. PubMed ID: 25069428
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Pharmacokinetic, toxicokinetic, and bioavailability studies of epigallocatechin-3-gallate loaded solid lipid nanoparticle in rat model.
    Ramesh N; Mandal AKA
    Drug Dev Ind Pharm; 2019 Sep; 45(9):1506-1514. PubMed ID: 31215261
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Niosomal delivery of simvastatin to MDA-MB-231 cancer cells.
    Akbarzadeh I; Saremi Poor A; Yaghmaei S; Norouzian D; Noorbazargan H; Saffar S; Ahangari Cohan R; Bakhshandeh H
    Drug Dev Ind Pharm; 2020 Sep; 46(9):1535-1549. PubMed ID: 32808813
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Absorption, distribution, elimination of tea polyphenols in rats.
    Chen L; Lee MJ; Li H; Yang CS
    Drug Metab Dispos; 1997 Sep; 25(9):1045-50. PubMed ID: 9311619
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Formulation with ascorbic acid and sucrose modulates catechin bioavailability from green tea.
    Peters CM; Green RJ; Janle EM; Ferruzzi MG
    Food Res Int; 2010 Jan; 43(1):95-102. PubMed ID: 20161530
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Effects of green tea extract and (-)-epigallocatechin-3-gallate on pharmacokinetics of nadolol in rats.
    Misaka S; Miyazaki N; Fukushima T; Yamada S; Kimura J
    Phytomedicine; 2013 Nov; 20(14):1247-50. PubMed ID: 23920278
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Single GUV method reveals interaction of tea catechin (-)-epigallocatechin gallate with lipid membranes.
    Tamba Y; Ohba S; Kubota M; Yoshioka H; Yoshioka H; Yamazaki M
    Biophys J; 2007 May; 92(9):3178-94. PubMed ID: 17293394
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Oral epigallocatechin gallate reduces intestinal nadolol absorption via modulation of Oatp1a5 and Oct1 transcriptional levels in spontaneously hypertensive rats.
    Tan HJ; Ling WC; Chua AL; Lee SK
    Phytomedicine; 2021 Sep; 90():153623. PubMed ID: 34303263
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Potentials of proniosomes for improving the oral bioavailability of poorly water-soluble drugs.
    Song S; Tian B; Chen F; Zhang W; Pan Y; Zhang Q; Yang X; Pan W
    Drug Dev Ind Pharm; 2015 Jan; 41(1):51-62. PubMed ID: 24111828
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Transport, metabolism and remedial potential of functional food extracts (FFEs) in Caco-2 cells monolayer: A review.
    Iftikhar M; Iftikhar A; Zhang H; Gong L; Wang J
    Food Res Int; 2020 Oct; 136():109240. PubMed ID: 32846508
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Transdermal solid delivery of epigallocatechin-3-gallate using self-double-emulsifying drug delivery system as vehicle: Formulation, evaluation and vesicle-skin interaction.
    Hu C; Gu C; Fang Q; Wang Q; Xia Q
    J Biomater Appl; 2016 Feb; 30(7):1080-91. PubMed ID: 26637442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.