These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24855459)

  • 1. Facile molten salt synthesis of Li2NiTiO4 cathode material for Li-ion batteries.
    Wang Y; Wang Y; Wang F
    Nanoscale Res Lett; 2014; 9(1):197. PubMed ID: 24855459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Ternary Molten Salt Approach for Direct Regeneration of LiNi
    Qin Z; Wen Z; Xu Y; Zheng Z; Bai M; Zhang N; Jia C; Wu HB; Chen G
    Small; 2022 Oct; 18(43):e2106719. PubMed ID: 35182009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Redox Mechanism of Cation-Disordered, Rock-Salt Cathode-Material Li-Ni-Ti-Nb-O Compounds for a Li-Ion Battery.
    Yu Z; Qu X; Dou A; Su M; Liu Y; Wu F
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35777-35787. PubMed ID: 31483600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A facile approach to nanoarchitectured three-dimensional graphene-based Li-Mn-O composite as high-power cathodes for Li-ion batteries.
    Zhang W; Zeng Y; Xu C; Xiao N; Gao Y; Li LJ; Chen X; Hng HH; Yan Q
    Beilstein J Nanotechnol; 2012; 3():513-23. PubMed ID: 23019546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Synthesis Conditions of Na
    Sun Y; Cheng J; Tu Z; Chen M; Huang Q; Wang C; Yan J
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Facile Molten-Salt Route for Large-Scale Synthesis of NiFe2O4 Nanoplates with Enhanced Lithium Storage Capability.
    Huang G; Du X; Zhang F; Yin D; Wang L
    Chemistry; 2015 Sep; 21(40):14140-5. PubMed ID: 26251115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium-Excess Research of Cathode Material Li₂MnTiO₄ for Lithium-Ion Batteries.
    Zhang X; Yang L; Hao F; Chen H; Yang M; Fang D
    Nanomaterials (Basel); 2015 Nov; 5(4):1985-1994. PubMed ID: 28347107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual function Li-reactive coating from residual lithium on Ni-rich NCM cathode material for Lithium-ion batteries.
    Sattar T; Sim SJ; Jin BS; Kim HS
    Sci Rep; 2021 Sep; 11(1):18590. PubMed ID: 34545169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and Performance of High Energy Li-Ion Battery Based on the Spherical Li[Li(0.2)Ni(0.16)Co(0.1)Mn(0.54)]O2 Cathode and Si Anode.
    Ye J; Li YX; Zhang L; Zhang XP; Han M; He P; Zhou HS
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):208-14. PubMed ID: 26651500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Synthesis of SiO
    Zhao Y; Liu Z; Zhang Y; Mentbayeva A; Wang X; Maximov MY; Liu B; Bakenov Z; Yin F
    Nanoscale Res Lett; 2017 Dec; 12(1):459. PubMed ID: 28724265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Step Low-Temperature Molten Salt Synthesis of Two-Dimensional Si@SiO
    Liu Q; Hu X; Liu Y; Wen Z
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55844-55855. PubMed ID: 33259194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium-Rich Rock Salt Type Sulfides-Selenides (Li
    Celasun Y; Colin JF; Martinet S; Benayad A; Peralta D
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable Precursor-Assisted Synthesis of a High Voltage LiNi
    Islam M; Ali G; Faizan M; Han D; Ali B; Yun S; Ahmad H; Nam KW
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic Optimization of Battery Materials: Key Parameter Optimization for the Scalable Synthesis of Uniform, High-Energy, and High Stability LiNi
    Ren D; Shen Y; Yang Y; Shen L; Levin BDA; Yu Y; Muller DA; Abruña HD
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35811-35819. PubMed ID: 28938066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries.
    Kang J; Mathew V; Gim J; Kim S; Song J; Im WB; Han J; Lee JY; Kim J
    Sci Rep; 2014 Feb; 4():4047. PubMed ID: 24509825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A High Rate and Stable Hybrid Li/Na-Ion Battery Based on a Hydrated Molten Inorganic Salt Electrolyte.
    Wang Z; Xu Y; Peng J; Ou M; Wei P; Fang C; Li Q; Huang J; Han J; Huang Y
    Small; 2021 Oct; 17(40):e2101650. PubMed ID: 34453487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical LiFePO4/C microspheres with high tap density assembled by nanosheets as cathode materials for high-performance Li-ion batteries.
    Wei W; Chen D; Wang R; Guo L
    Nanotechnology; 2012 Nov; 23(47):475401. PubMed ID: 23117189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries.
    Wang D; Yu R; Wang X; Ge L; Yang X
    Sci Rep; 2015 Feb; 5():8403. PubMed ID: 25672573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anthracite-Derived Dual-Phase Carbon-Coated Li
    Ding XK; Zhang LL; Yang XL; Fang H; Zhou YX; Wang JQ; Ma D
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42788-42796. PubMed ID: 29155556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of LiMnPO
    Wang C; Li S; Han Y; Lu Z
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27618-27624. PubMed ID: 28770987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.