BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24855463)

  • 1. A nontoxic and low-cost hydrothermal route for synthesis of hierarchical Cu2ZnSnS4 particles.
    Xia Y; Chen Z; Zhang Z; Fang X; Liang G
    Nanoscale Res Lett; 2014; 9(1):208. PubMed ID: 24855463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals - a hydrothermal approach.
    Tiong VT; Bell J; Wang H
    Beilstein J Nanotechnol; 2014; 5():438-46. PubMed ID: 24778970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant-Tuned Phase Structure and Morphologies of Cu
    Guo Y; Wei J; Liu Y; Yang T; Xu Z
    Nanoscale Res Lett; 2017 Dec; 12(1):181. PubMed ID: 28282984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Step Hydrothermal Synthesis of Cu
    Henríquez R; Nogales PS; Moreno PG; Cartagena EM; Bongiorno PL; Navarrete-Astorga E; Dalchiele EA
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precisely Controlled Synthesis of High Quality Kesterite Cu2ZnSnS4 Thin Film via Co-Electrodeposited CuZnSn Alloy Film.
    Hreid T; Tiong VT; Cai M; Wang H; Will G
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5701-6. PubMed ID: 27427618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of 1,8-Diiodooctane (DIO) Additive on the Active Layer Properties of Cu
    Mkawi EM; Al-Hadeethi Y; Arkook B; Bekyarova E
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and properties of surfactant-free water-dispersible Cu2ZnSnS4 nanocrystals: a material for low-cost photovoltaics.
    Kush P; Ujjain SK; Mehra NC; Jha P; Sharma RK; Deka S
    Chemphyschem; 2013 Aug; 14(12):2793-9. PubMed ID: 23801647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-selective synthesis of Cu2ZnSnS4 nanocrystals using different sulfur precursors.
    Li Z; Lui AL; Lam KH; Xi L; Lam YM
    Inorg Chem; 2014 Oct; 53(20):10874-80. PubMed ID: 25264823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the Optimization of Cu-Zn-Sn-O to Prepare Cu
    Li Q; Hu J; Cui Y; Wang J; Du J; Wang M; Hao Y; Shen T; Duan L; Wang S; Sun K
    Front Chem; 2021; 9():675642. PubMed ID: 34124003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-Term Oxidation Susceptibility in Ambient Air of the Semiconductor Kesterite Cu
    Lejda K; Ziąbka M; Olejniczak Z; Janik JF
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen Aspects in the High-Pressure and High-Temperature Sintering of Semiconductor Kesterite Cu
    Lejda K; Janik JF; Perzanowski M; Stelmakh S; Pałosz B
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers.
    Chen S; Walsh A; Gong XG; Wei SH
    Adv Mater; 2013 Mar; 25(11):1522-39. PubMed ID: 23401176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetism of Kesterite Cu
    Lejda K; Drygaś M; Janik JF; Szczytko J; Twardowski A; Olejniczak Z
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-based synthesis of wurtzite Cu2ZnSnS4 nanoleaves introduced by α-Cu2S nanocrystals as a catalyst.
    Zhang W; Zhai L; He N; Zou C; Geng X; Cheng L; Dong Y; Huang S
    Nanoscale; 2013 Sep; 5(17):8114-21. PubMed ID: 23884477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Well-Dispersed Cu
    Cheng J; Dai Z; Chen B; Ji R; Yang X; Hu R; Zhu J; Li L
    Nanoscale Res Lett; 2016 Dec; 11(1):550. PubMed ID: 27957729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ternary Cu
    Jathar SB; Rondiya SR; Jadhav YA; Nilegave DS; Cross RW; Barma SV; Nasane MP; Gaware SA; Bade BR; Jadkar SR; Funde AM; Dzade NY
    Chem Mater; 2021 Mar; 33(6):1983-1993. PubMed ID: 33840893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-cost electrospun highly crystalline kesterite Cu2ZnSnS4 nanofiber counter electrodes for efficient dye-sensitized solar cells.
    Mali SS; Patil PS; Hong CK
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1688-96. PubMed ID: 24383575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermogravimetric/Thermal-Mass Spectroscopy Insight into Oxidation Propensity of Various Mechanochemically Made Kesterite Cu
    Lejda K; Partyka J; Janik JF
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient thermolysis route to monodisperse Cu₂ZnSnS₄ nanocrystals with controlled shape and structure.
    Zhang X; Guo G; Ji C; Huang K; Zha C; Wang Y; Shen L; Gupta A; Bao N
    Sci Rep; 2014 May; 4():5086. PubMed ID: 24866987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application.
    Camara SM; Wang L; Zhang X
    Nanotechnology; 2013 Dec; 24(49):495401. PubMed ID: 24231683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.