These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24855463)

  • 41. Element substitution of kesterite Cu
    Lu S; Yang H; Li F; Wang Y; Chen S; Yang G; Liu Y; Zhang X
    Sci Rep; 2018 Jun; 8(1):8714. PubMed ID: 29880870
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Understanding the phase formation kinetics of nano-crystalline kesterite deposited on mesoscopic scaffolds via in situ multi-wavelength Raman-monitored annealing.
    Wang Z; Elouatik S; Demopoulos GP
    Phys Chem Chem Phys; 2016 Oct; 18(42):29435-29446. PubMed ID: 27738685
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Co-electroplated Kesterite Bifacial Thin-Film Solar Cells: A Study of Sulfurization Temperature.
    Ge J; Chu J; Yan Y; Jiang J; Yang P
    ACS Appl Mater Interfaces; 2015 May; 7(19):10414-28. PubMed ID: 25871647
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The synthesis and characterization of Cu
    Al-Shakban M; Matthews PD; Savjani N; Zhong XL; Wang Y; Missous M; O'Brien P
    J Mater Sci; 2017; 52(21):12761-12771. PubMed ID: 32025050
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cation/Anion Substitution in Cu
    Ananthoju B; Mohapatra J; Jangid MK; Bahadur D; Medhekar NV; Aslam M
    Sci Rep; 2016 Oct; 6():35369. PubMed ID: 27748406
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of incorporation of Ag into a kesterite Cu
    Ikeda S; Nguyen TH; Okamoto R; Remeika M; Abdellaoui I; Islam MM; Harada T; Abe R; Sakurai T
    Phys Chem Chem Phys; 2021 Dec; 24(1):468-476. PubMed ID: 34901980
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Secondary Crystalline Phases Influence on Optical Properties in Off-Stoichiometric Cu
    Sava F; Diagne O; Galca AC; Simandan ID; Matei E; Burdusel M; Becherescu N; Becherescu V; Mihai C; Velea A
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081362
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly.
    Singh A; Geaney H; Laffir F; Ryan KM
    J Am Chem Soc; 2012 Feb; 134(6):2910-3. PubMed ID: 22296030
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation of Optimum Mg Doping Content and Annealing Parameters of Cu
    Sui Y; Zhang Y; Jiang D; He W; Wang Z; Wang F; Yao B; Yang L
    Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31262019
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multinuclear (67Zn, 119Sn and 65Cu) NMR spectroscopy--an ideal technique to probe the cationic ordering in Cu2ZnSnS4 photovoltaic materials.
    Choubrac L; Paris M; Lafond A; Guillot-Deudon C; Rocquefelte X; Jobic S
    Phys Chem Chem Phys; 2013 Jul; 15(26):10722-5. PubMed ID: 23728239
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Syntheses of Cu2SnS3 and Cu2ZnSnS4 nanoparticles with tunable Zn/Sn ratios under multibubble sonoluminescence conditions.
    Park J; Song M; Jung WM; Lee WY; Kim H; Kim Y; Hwang C; Shim IW
    Dalton Trans; 2013 Aug; 42(29):10545-50. PubMed ID: 23759949
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication of Cu
    Zhang X; Fu E; Zheng M; Wang Y
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31739533
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kesterite Cu2ZnSnS4 as a Low-Cost Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells.
    Wu Q; Xue C; Li Y; Zhou P; Liu W; Zhu J; Dai S; Zhu C; Yang S
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28466-73. PubMed ID: 26646015
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improving Carrier-Transport Properties of CZTS by Mg Incorporation with Spray Pyrolysis.
    Lie S; Leow SW; Bishop DM; Guc M; Izquierdo-Roca V; Gunawan O; Wong LH
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25824-25832. PubMed ID: 31251557
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microwave fabrication of Cu2ZnSnS4 nanoparticle and its visible light photocatalytic properties.
    Zhou Z; Zhang P; Lin Y; Ashalley E; Ji H; Wu J; Li H; Wang Z
    Nanoscale Res Lett; 2014; 9(1):477. PubMed ID: 25237289
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrothermal Synthesis of BiFeO3 Nanoparticles for Visible Light Photocatalytic Applications.
    Niu F; Gao T; Zhang N; Chen Z; Huang Q; Qin L; Sun X; Huang Y
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9693-8. PubMed ID: 26682398
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Insight into the Growth Mechanism of Mixed Phase CZTS and the Photocatalytic Performance.
    Yang Y; Ding Y; Zhang J; Liang N; Long L; Liu J
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564148
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Defining the Role of Cr
    Chown AL; Farnum BH
    Inorg Chem; 2022 May; 61(21):8349-8355. PubMed ID: 35587131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ternary and Quaternary Nanocrystalline Cu-Based Sulfides as Perspective Antibacterial Materials Mechanochemically Synthesized in a Scalable Fashion.
    Baláž M; Tkáčiková L; Stahorský M; Casas-Luna M; Dutková E; Čelko L; Kováčová M; Achimovičová M; Baláž P
    ACS Omega; 2022 Aug; 7(31):27164-27171. PubMed ID: 35967044
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wurtzite CZTS nanocrystals and phase evolution to kesterite thin film for solar energy harvesting.
    Ghorpade UV; Suryawanshi MP; Shin SW; Hong CW; Kim I; Moon JH; Yun JH; Kim JH; Kolekar SS
    Phys Chem Chem Phys; 2015 Aug; 17(30):19777-88. PubMed ID: 26153341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.