BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24855558)

  • 1. Incidence and severity of myofiber branching with regeneration and aging.
    Pichavant C; Pavlath GK
    Skelet Muscle; 2014; 4():9. PubMed ID: 24855558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decrease of myofiber branching via muscle-specific expression of the olfactory receptor mOR23 in dystrophic muscle leads to protection against mechanical stress.
    Pichavant C; Burkholder TJ; Pavlath GK
    Skelet Muscle; 2016; 6():2. PubMed ID: 26798450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice.
    Hernández-Ochoa EO; Pratt SJP; Garcia-Pelagio KP; Schneider MF; Lovering RM
    Physiol Rep; 2015 Apr; 3(4):. PubMed ID: 25907787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myofiber branching rather than myofiber hyperplasia contributes to muscle hypertrophy in mdx mice.
    Faber RM; Hall JK; Chamberlain JS; Banks GB
    Skelet Muscle; 2014; 4():10. PubMed ID: 24910770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered nuclear dynamics in MDX myofibers.
    Iyer SR; Shah SB; Valencia AP; Schneider MF; Hernández-Ochoa EO; Stains JP; Blemker SS; Lovering RM
    J Appl Physiol (1985); 2017 Mar; 122(3):470-481. PubMed ID: 27979987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling.
    Lovering RM; Michaelson L; Ward CW
    Am J Physiol Cell Physiol; 2009 Sep; 297(3):C571-80. PubMed ID: 19605736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers.
    Yablonka-Reuveni Z; Anderson JE
    Dev Dyn; 2006 Jan; 235(1):203-12. PubMed ID: 16258933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degenerative and regenerative features of myofibers differ among skeletal muscles in a murine model of muscular dystrophy.
    Ikeda T; Ichii O; Otsuka-Kanazawa S; Nakamura T; Elewa YH; Kon Y
    J Muscle Res Cell Motil; 2016 Oct; 37(4-5):153-164. PubMed ID: 27472930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscular dystrophy and muscle regeneration.
    Ontell M
    Hum Pathol; 1986 Jul; 17(7):673-82. PubMed ID: 3721493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay between myofibers and pro-inflammatory macrophages controls muscle damage in mdx mice.
    Saclier M; Ben Larbi S; My Ly H; Moulin E; Mounier R; Chazaud B; Juban G
    J Cell Sci; 2021 Sep; 134(18):. PubMed ID: 34471933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branched fibres in old dystrophic mdx muscle are associated with mechanical weakening of the sarcolemma, abnormal Ca2+ transients and a breakdown of Ca2+ homeostasis during fatigue.
    Head SI
    Exp Physiol; 2010 May; 95(5):641-56. PubMed ID: 20139167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regenerating Myofibers after an Acute Muscle Injury: What Do We Really Know about Them?
    Pizza FX; Buckley KH
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forced myofiber regeneration promotes dystrophin gene transfer and improved muscle function despite advanced disease in old dystrophic mice.
    Guibinga GH; Ebihara S; Nalbantoglu J; Holland P; Karpati G; Petrof BJ
    Mol Ther; 2001 Nov; 4(5):499-507. PubMed ID: 11708887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marked irregular myofiber shape is a hallmark of human skeletal muscle ageing and is reversed by heavy resistance training.
    Soendenbroe C; Karlsen A; Svensson RB; Kjaer M; Andersen JL; Mackey AL
    J Cachexia Sarcopenia Muscle; 2024 Feb; 15(1):306-318. PubMed ID: 38123165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new function for odorant receptors: MOR23 is necessary for normal tissue repair in skeletal muscle.
    Pavlath GK
    Cell Adh Migr; 2010; 4(4):502-6. PubMed ID: 20519965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle regeneration after imposed injury is better in younger than older mdx dystrophic mice.
    Zacharias JM; Anderson JE
    J Neurol Sci; 1991 Aug; 104(2):190-6. PubMed ID: 1940973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A possible mechanism of phenotypic expression of normal and dystrophic genomes on succinic dehydrogenase activity and fiber size within a single myofiber of muscle transplants.
    Kikuchi T; Doerr L; Ashmore CR
    J Neurol Sci; 1980 Mar; 45(2-3):273-86. PubMed ID: 7365504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MyD88 is required for satellite cell-mediated myofiber regeneration in dystrophin-deficient mdx mice.
    Gallot YS; Straughn AR; Bohnert KR; Xiong G; Hindi SM; Kumar A
    Hum Mol Genet; 2018 Oct; 27(19):3449-3463. PubMed ID: 30010933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QuantiMus: A Machine Learning-Based Approach for High Precision Analysis of Skeletal Muscle Morphology.
    Kastenschmidt JM; Ellefsen KL; Mannaa AH; Giebel JJ; Yahia R; Ayer RE; Pham P; Rios R; Vetrone SA; Mozaffar T; Villalta SA
    Front Physiol; 2019; 10():1416. PubMed ID: 31849692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternating bipolar field stimulation identifies muscle fibers with defective excitability but maintained local Ca(2+) signals and contraction.
    Hernández-Ochoa EO; Vanegas C; Iyer SR; Lovering RM; Schneider MF
    Skelet Muscle; 2016; 6():6. PubMed ID: 26855765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.