BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24855656)

  • 1. A microfluidic platform for profiling biomechanical properties of bacteria.
    Sun X; Weinlandt WD; Patel H; Wu M; Hernandez CJ
    Lab Chip; 2014 Jul; 14(14):2491-8. PubMed ID: 24855656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels.
    Lee LM; Liu AP
    Lab Chip; 2015 Jan; 15(1):264-73. PubMed ID: 25361042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria.
    Moolman MC; Huang Z; Krishnan ST; Kerssemakers JW; Dekker NH
    J Nanobiotechnology; 2013 Apr; 11():12. PubMed ID: 23575419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic chemostat for measuring single cell dynamics in bacteria.
    Long Z; Nugent E; Javer A; Cicuta P; Sclavi B; Cosentino Lagomarsino M; Dorfman KD
    Lab Chip; 2013 Mar; 13(5):947-54. PubMed ID: 23334753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid electrical lysis of bacterial cells in a microfluidic device.
    Wang HY; Banada PP; Bhunia AK; Lu C
    Methods Mol Biol; 2007; 385():23-35. PubMed ID: 18365702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A scalable microfluidic chip for bacterial suspension culture.
    Gan M; Su J; Wang J; Wu H; Chen L
    Lab Chip; 2011 Dec; 11(23):4087-92. PubMed ID: 22030862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid additive-free bacteria lysis using traveling surface acoustic waves in microfluidic channels.
    Lu H; Mutafopulos K; Heyman JA; Spink P; Shen L; Wang C; Franke T; Weitz DA
    Lab Chip; 2019 Dec; 19(24):4064-4070. PubMed ID: 31690904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast screening of bacterial suspension culture conditions on chips.
    Tang Y; Gan M; Xie Y; Li X; Chen L
    Lab Chip; 2014 Mar; 14(6):1162-7. PubMed ID: 24477551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformation of filamentous Escherichia coli cells in a microfluidic device: a new technique to study cell mechanics.
    Caspi Y
    PLoS One; 2014; 9(1):e83775. PubMed ID: 24392095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial growth and motility in sub-micron constrictions.
    Männik J; Driessen R; Galajda P; Keymer JE; Dekker C
    Proc Natl Acad Sci U S A; 2009 Sep; 106(35):14861-6. PubMed ID: 19706420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.
    van Leest T; Caro J
    Lab Chip; 2013 Nov; 13(22):4358-65. PubMed ID: 24057009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sources of variability in SERS spectra of bacteria: comprehensive analysis of interactions between selected bacteria and plasmonic nanostructures.
    Witkowska E; Niciński K; Korsak D; Szymborski T; Kamińska A
    Anal Bioanal Chem; 2019 Apr; 411(10):2001-2017. PubMed ID: 30828759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A parallel diffusion-based microfluidic device for bacterial chemotaxis analysis.
    Si G; Yang W; Bi S; Luo C; Ouyang Q
    Lab Chip; 2012 Apr; 12(7):1389-94. PubMed ID: 22361931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device.
    Walter A; März A; Schumacher W; Rösch P; Popp J
    Lab Chip; 2011 Mar; 11(6):1013-21. PubMed ID: 21283864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic device for real-time monitoring of Bacillus subtilis bacterial spores during germination based on non-specific physicochemical interactions on the nanoscale level.
    Zabrocka L; Langer K; Michalski A; Kocik J; Langer JJ
    Lab Chip; 2015 Jan; 15(1):274-82. PubMed ID: 25363735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms.
    Hohne DN; Younger JG; Solomon MJ
    Langmuir; 2009 Jul; 25(13):7743-51. PubMed ID: 19219968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing.
    Kara V; Duan C; Gupta K; Kurosawa S; Stearns-Kurosawa DJ; Ekinci KL
    Lab Chip; 2018 Feb; 18(5):743-753. PubMed ID: 29387860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bending forces plastically deform growing bacterial cell walls.
    Amir A; Babaeipour F; McIntosh DB; Nelson DR; Jun S
    Proc Natl Acad Sci U S A; 2014 Apr; 111(16):5778-83. PubMed ID: 24711421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Microfluidic Biodisplay.
    Volpetti F; Petrova E; Maerkl SJ
    ACS Synth Biol; 2017 Nov; 6(11):1979-1987. PubMed ID: 28771313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity.
    Tuson HH; Auer GK; Renner LD; Hasebe M; Tropini C; Salick M; Crone WC; Gopinathan A; Huang KC; Weibel DB
    Mol Microbiol; 2012 Jun; 84(5):874-91. PubMed ID: 22548341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.