These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24855656)

  • 21. Aggregation and interaction of cationic nanoparticles on bacterial surfaces.
    Hayden SC; Zhao G; Saha K; Phillips RL; Li X; Miranda OR; Rotello VM; El-Sayed MA; Schmidt-Krey I; Bunz UH
    J Am Chem Soc; 2012 Apr; 134(16):6920-3. PubMed ID: 22489570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip.
    Mahalanabis M; Al-Muayad H; Kulinski MD; Altman D; Klapperich CM
    Lab Chip; 2009 Oct; 9(19):2811-7. PubMed ID: 19967118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A hydrogel-based microfluidic device for the studies of directed cell migration.
    Cheng SY; Heilman S; Wasserman M; Archer S; Shuler ML; Wu M
    Lab Chip; 2007 Jun; 7(6):763-9. PubMed ID: 17538719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes.
    Etayash H; Khan MF; Kaur K; Thundat T
    Nat Commun; 2016 Oct; 7():12947. PubMed ID: 27698375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Counting bacteria on a microfluidic chip.
    Song Y; Zhang H; Chon CH; Chen S; Pan X; Li D
    Anal Chim Acta; 2010 Nov; 681(1-2):82-6. PubMed ID: 21035606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A microfluidic device for bacteria detection in aqueous samples.
    Jha AK; Tripathi A; Bose A
    Environ Technol; 2011 Oct; 32(13-14):1661-7. PubMed ID: 22329157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria.
    Wang S; Arellano-Santoyo H; Combs PA; Shaevitz JW
    Proc Natl Acad Sci U S A; 2010 May; 107(20):9182-5. PubMed ID: 20439764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stiffness dependent separation of cells in a microfluidic device.
    Wang G; Mao W; Byler R; Patel K; Henegar C; Alexeev A; Sulchek T
    PLoS One; 2013; 8(10):e75901. PubMed ID: 24146787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple microfluidic devices for in vivo imaging of C. elegans, Drosophila and zebrafish.
    Mondal S; Ahlawat S; Koushika SP
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Programmable, Pneumatically Actuated Microfluidic Device with an Integrated Nanochannel Array To Track Development of Individual Bacteria.
    Baker JD; Kysela DT; Zhou J; Madren SM; Wilkens AS; Brun YV; Jacobson SC
    Anal Chem; 2016 Sep; 88(17):8476-83. PubMed ID: 27314919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells.
    Zhu Z; Frey O; Ottoz DS; Rudolf F; Hierlemann A
    Lab Chip; 2012 Mar; 12(5):906-15. PubMed ID: 22193373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic micropipette aspiration for measuring the deformability of single cells.
    Guo Q; Park S; Ma H
    Lab Chip; 2012 Aug; 12(15):2687-95. PubMed ID: 22622288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A flow cytometry-based submicron-sized bacterial detection system using a movable virtual wall.
    Choi H; Jeon CS; Hwang I; Ko J; Lee S; Choo J; Boo JH; Kim HC; Chung TD
    Lab Chip; 2014 Jul; 14(13):2327-33. PubMed ID: 24828279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments.
    Shim JU; Olguin LF; Whyte G; Scott D; Babtie A; Abell C; Huck WT; Hollfelder F
    J Am Chem Soc; 2009 Oct; 131(42):15251-6. PubMed ID: 19799429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiplexed microfluidic screening of bacterial chemotaxis.
    Stehnach MR; Henshaw RJ; Floge SA; Guasto JS
    Elife; 2023 Jul; 12():. PubMed ID: 37486823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities.
    Moffitt JR; Lee JB; Cluzel P
    Lab Chip; 2012 Apr; 12(8):1487-94. PubMed ID: 22395180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics characterization of fully hydrated bacterial cell walls by solid-state NMR: evidence for cooperative binding of metal ions.
    Kern T; Giffard M; Hediger S; Amoroso A; Giustini C; Bui NK; Joris B; Bougault C; Vollmer W; Simorre JP
    J Am Chem Soc; 2010 Aug; 132(31):10911-9. PubMed ID: 20681725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.