BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

688 related articles for article (PubMed ID: 24855948)

  • 1. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis.
    Alushin GM; Lander GC; Kellogg EH; Zhang R; Baker D; Nogales E
    Cell; 2014 May; 157(5):1117-29. PubMed ID: 24855948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy.
    Yajima H; Ogura T; Nitta R; Okada Y; Sato C; Hirokawa N
    J Cell Biol; 2012 Aug; 198(3):315-22. PubMed ID: 22851320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic and structural analysis of microtubule assembly: the role of GTP hydrolysis.
    Vulevic B; Correia JJ
    Biophys J; 1997 Mar; 72(3):1357-75. PubMed ID: 9138581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly.
    Wang HW; Nogales E
    Nature; 2005 Jun; 435(7044):911-5. PubMed ID: 15959508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of tubulin-tubulin lattice contacts in the mechanism of microtubule dynamic instability.
    Manka SW; Moores CA
    Nat Struct Mol Biol; 2018 Jul; 25(7):607-615. PubMed ID: 29967541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubule structure at improved resolution.
    Meurer-Grob P; Kasparian J; Wade RH
    Biochemistry; 2001 Jul; 40(27):8000-8. PubMed ID: 11434769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules.
    LaFrance BJ; Roostalu J; Henkin G; Greber BJ; Zhang R; Normanno D; McCollum CO; Surrey T; Nogales E
    Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34996871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray and Cryo-EM structures reveal mutual conformational changes of Kinesin and GTP-state microtubules upon binding.
    Morikawa M; Yajima H; Nitta R; Inoue S; Ogura T; Sato C; Hirokawa N
    EMBO J; 2015 May; 34(9):1270-86. PubMed ID: 25777528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability.
    Fedorov VA; Orekhov PS; Kholina EG; Zhmurov AA; Ataullakhanov FI; Kovalenko IB; Gudimchuk NB
    PLoS Comput Biol; 2019 Aug; 15(8):e1007327. PubMed ID: 31469822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP.
    Hyman AA; Salser S; Drechsel DN; Unwin N; Mitchison TJ
    Mol Biol Cell; 1992 Oct; 3(10):1155-67. PubMed ID: 1421572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules.
    Caplow M; Shanks J
    Mol Biol Cell; 1996 Apr; 7(4):663-75. PubMed ID: 8730106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (alpha,beta)methylenediphosphonate.
    Müller-Reichert T; Chrétien D; Severin F; Hyman AA
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3661-6. PubMed ID: 9520422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins.
    Zhang R; Alushin GM; Brown A; Nogales E
    Cell; 2015 Aug; 162(4):849-59. PubMed ID: 26234155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Straight GDP-tubulin protofilaments form in the presence of taxol.
    Elie-Caille C; Severin F; Helenius J; Howard J; Muller DJ; Hyman AA
    Curr Biol; 2007 Oct; 17(20):1765-70. PubMed ID: 17919908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray fiber diffraction analysis shows dynamic changes in axial tubulin repeats in native microtubules depending on paclitaxel content, temperature and GTP-hydrolysis.
    Kamimura S; Fujita Y; Wada Y; Yagi T; Iwamoto H
    Cytoskeleton (Hoboken); 2016 Mar; 73(3):131-44. PubMed ID: 26873786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice.
    Caplow M; Ruhlen RL; Shanks J
    J Cell Biol; 1994 Nov; 127(3):779-88. PubMed ID: 7962059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule's conformational cap.
    Chrétien D; Jáinosi I; Taveau JC; Flyvbjerg H
    Cell Struct Funct; 1999 Oct; 24(5):299-303. PubMed ID: 15216886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tubulin islands containing slowly hydrolyzable GTP analogs regulate the mechanism and kinetics of microtubule depolymerization.
    Bollinger JA; Imam ZI; Stevens MJ; Bachand GD
    Sci Rep; 2020 Aug; 10(1):13661. PubMed ID: 32788644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural model for differential cap maturation at growing microtubule ends.
    Estévez-Gallego J; Josa-Prado F; Ku S; Buey RM; Balaguer FA; Prota AE; Lucena-Agell D; Kamma-Lorger C; Yagi T; Iwamoto H; Duchesne L; Barasoain I; Steinmetz MO; Chrétien D; Kamimura S; Díaz JF; Oliva MA
    Elife; 2020 Mar; 9():. PubMed ID: 32151315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependence rigidity of non-taxol stabilized single microtubules.
    Kawaguchi K; Yamaguchi A
    Biochem Biophys Res Commun; 2010 Nov; 402(1):66-9. PubMed ID: 20920471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.